Skip to main content

Structure of the Mammalian Choroid Plexus

  • Chapter
  • First Online:

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

The human choroid plexus (CP) is a highly vascularized epithelial structure, weighing approximately 1 g and residing inside the brain ventricles. The CP secretes the majority of the daily production of 500 ml cerebrospinal fluid (CSF) with a transport rate, which is unsurpassed by other human epithelia. The CP is a key structure for (1) providing the CSF for buoyancy decreasing the effective weight of the brain from 1.5 kg to only 50 g, (2) delivering local mediators and hormones to the brain parenchyma via the CSF, (3) maintaining a suitable ionic microenvironment, and (4) forming a barrier against toxins, drugs, microorganisms, and immune cells. Choroid plexus dysfunctions are described in a wide range of clinical conditions such as aging, Alzheimer’s disease, brain edema, stroke, neoplasms, and several types of hydrocephalus. Knowledge on the structure and ultrastructure of the choroid plexus is essential for generating hypotheses on the mechanisms involved in the normal function of the CP and in diseases and conditions with deranged CSF secretion, in inflammation, or in drug delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alonso MI et al (1999) Involvement of sulfated proteoglycans in embryonic brain expansion at earliest stages of development in rat embryos. Cells Tissues Organs 165(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Alper SL et al (1994) The fodrin-ankyrin cytoskeleton of choroid plexus preferentially colocalizes with apical Na+K(+)-ATPase rather than with basolateral anion exchanger AE2. J Clin Invest 93(4):1430–1438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ames A III, Higashi K, Nesbett FB (1965) Effects of Pco2 acetazolamide and ouabain on volume and composition of choroid-plexus fluid. J Physiol 181(3):516–524

    Article  PubMed  PubMed Central  Google Scholar 

  • Andia ED (1935) Plexos coroideos de los ventriculos laterales. Virtus, Buenos Aires

    Google Scholar 

  • Askanazy M (1914) Zur Physiologie und Pathologie der Plexus chorioidei. Zentralbl Allg Pathol 25:390–391

    Google Scholar 

  • Assemat E et al (2008) Polarity complex proteins. Biochim Biophys Acta 1778(3):614–630

    Article  PubMed  CAS  Google Scholar 

  • Bairamian D et al (1991) Potassium cotransport with sodium and chloride in the choroid plexus. J Neurochem 56(5):1623–1629

    Article  PubMed  CAS  Google Scholar 

  • Bakay Lv (1941) Die Innervation der Pia Mater, der Plexus chorioideus und der Hirngefässen, mit Rücksicht auf den Einfluss des sympatischen Nervensystems auf die Liquorsekretion. Arch Psychiatr Nervenkr 113:412–427

    Article  Google Scholar 

  • Bally-Cuif L, Cholley B, Wassef M (1995) Involvement of Wnt-1 in the formation of the mes/metencephalic boundary. Mech Dev 53(1):23–34

    Article  PubMed  CAS  Google Scholar 

  • Banizs B et al (2007) Altered pH(i) regulation and Na(+)/HCO3(-) transporter activity in choroid plexus of cilia-defective Tg737(orpk) mutant mouse. Am J Physiol Cell Physiol 292(4):C1409–C1416

    Article  PubMed  CAS  Google Scholar 

  • Barkho BZ, Monuki ES (2015) Proliferation of cultured mouse choroid plexus epithelial cells. PLoS One 10(3):e0121738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker G (1939) Beiträge zur Orthologie und Pathologie der Plexus chorioidei und des Ependyms. Beiträge zur Pathologische Anatomie und zur Allgemeine Pathologie 103:457–478

    Google Scholar 

  • Becker NH, Novikoff AB, Zimmerman HM (1967) Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem 15(3):160–165

    Article  PubMed  CAS  Google Scholar 

  • Benedikt M (1874) Über die innervation des plexus chorioideus inferior. Archiv Pathol Anat Physiol 59:395–400

    Article  Google Scholar 

  • Bouzinova EV et al (2005) Na+-dependent HCO3 - uptake into the rat choroid plexus epithelium is partially DIDS sensitive. Am J Physiol Cell Physiol 289(6):C1448–C1456

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40(3):648–677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cancilla PA, Zimmerman HM, Becker NH (1966) A histochemical and fine structure study of the developing rat choroid plexus. Acta Neuropathol 6(2):188–200

    Article  PubMed  CAS  Google Scholar 

  • Charron FM, Blanchard MG, Lapointe JY (2006) Intracellular hypertonicity is responsible for water flux associated with Na+/glucose cotransport. Biophys J 90(10):3546–3554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chizhikov VV et al (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci U S A 107(23):10725–10730

    Article  PubMed  PubMed Central  Google Scholar 

  • Chodobski A, Szmydynger-Chodobska J (2001) Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech 52(1):65–82

    Article  PubMed  CAS  Google Scholar 

  • Chouaf-Lakhdar L et al (2003) Proliferative activity and nestin expression in periventricular cells of the adult rat brain. Neuroreport 14(4):633–636

    Article  PubMed  Google Scholar 

  • Christensen IB et al (2013) Polarization of membrane associated proteins in the choroid plexus epithelium from normal and slc4a10 knockout mice. Front Physiol 4:344

    PubMed  PubMed Central  Google Scholar 

  • Christensen HL et al (2017) The V-ATPase is expressed in the choroid plexus and mediates cAMP-induced intracellular pH alterations. Physiol Rep 5(1):e13072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christensen IB et al (2018a) Choroid plexus epithelial cells express the adhesion protein P-cadherin at cell-cell contacts and syntaxin-4 in the luminal membrane domain. Am J Physiol Cell Physiol 314(5):C519–C533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christensen HL et al (2018b) The choroid plexus sodium-bicarbonate cotransporter NBCe2 regulates mouse cerebrospinal fluid pH. J Physiol 596(19):4709–4728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark SL (1928) Nerve endings in the choroid plexuses of the fourth ventricle. J Comp Neurol 47:1–21

    Article  Google Scholar 

  • Cobb S (1932) The cerebrospinal blood vessels. In: Penfield W (ed) Cytology and cellular pathology of the nervous system. Hoeber, New York, pp 575–577

    Google Scholar 

  • Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51(2):273–311

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13(12):507–512

    Article  PubMed  CAS  Google Scholar 

  • Currle DS et al (2005) Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development 132(15):3549–3559

    Article  PubMed  CAS  Google Scholar 

  • Da Mesquita S, Fu Z, Kipnis J (2018) The meningeal lymphatic system: a new player in neurophysiology. Neuron 100(2):375–388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Damkier HH et al (2009) Nhe1 is a luminal Na+/H+ exchanger in mouse choroid plexus and is targeted to the basolateral membrane in Ncbe/Nbcn2-null mice. Am J Physiol Cell Physiol 296(6):C1291–C1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93(4):1847–1892

    Article  PubMed  CAS  Google Scholar 

  • Damkier HH et al (2018) The murine choroid plexus epithelium expresses the 2Cl(-)/H(+) exchanger ClC-7 and Na(+)/H(+) exchanger NHE6 in the luminal membrane domain. Am J Physiol Cell Physiol 314(4):C439–C448

    Article  PubMed  CAS  Google Scholar 

  • Davson H, Segal MB (1970) The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol 209(1):131–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delpire E, Gagnon KB (2018) Na(+) -K(+) -2Cl(-) cotransporter (NKCC) physiological function in nonpolarized cells and transporting epithelia. Compr Physiol 8(2):871–901

    Article  PubMed  Google Scholar 

  • Dempsey EW, Wislocki GB (1955) An electron microscopic study of the blood-brain barrier in the rat, employing silver nitrate as a vital stain. J Biophys Biochem Cytol 1(3):245–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng QS, Johanson CE (1989) Stilbenes inhibit exchange of chloride between blood, choroid plexus and the cerebrospinal fluid. Brain Res 510:183–187

    Article  Google Scholar 

  • Desmond ME, Jacobson AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57(1):188–198

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657

    Article  CAS  PubMed  Google Scholar 

  • Diamond JM, Bossert WH (1968) Functional consequences of ultrastructural geometry in “backwards” fluid-transporting epithelia. J Cell Biol 37(3):694–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dohrmann GJ (1970) The choroid plexus: a historical review. Brain Res 18(2):197–218

    Article  PubMed  CAS  Google Scholar 

  • Dohrmann GJ, Herdson PB (1969) Lobated nuclei in epithelial cells of the choroid plexus of young mice. J Ultrastruct Res 29(3):218–223

    Article  PubMed  CAS  Google Scholar 

  • Döring F et al (1998) The epithelial inward rectifier channel Kir 7.1 displays unusual K+ permeation properties. J Neurosci 18:8625–8636

    Article  PubMed  PubMed Central  Google Scholar 

  • Dziegielewska KM et al (1980a) Proteins in cerebrospinal fluid and plasma of fetal sheep during development. J Physiol 300:441–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dziegielewska KM et al (1980b) Blood-cerebrospinal fluid transfer of plasma proteins during fetal development in the sheep. J Physiol 300:457–465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dziegielewska KM et al (2001) Development of the choroid plexus. Microsc Res Tech 52(1):5–20

    Article  PubMed  CAS  Google Scholar 

  • Faivre J (1854) Recherches sur la structure du coronarimn et des plexus choroides chez l’homme et les animaux. C R Acad Sci 39:424–427

    Google Scholar 

  • Fawcett DW (1959) The fine structure of capillaries, arterioles and small arteries. In: Reynolds SRM, Zweifach BW (eds) The microcirculation. Univeristy of Illinois Press, Urbana, pp 1–27

    Google Scholar 

  • Fawcett DW, Porter KR (1954) A study of the fine structure of ciliated epithelia. J Morphol 94:221–282

    Article  Google Scholar 

  • Findlay W (1899) The choroid plexus of the lateral ventricles of the brain, their histology, normal and pathological. Brain 22:161–202

    Article  Google Scholar 

  • Folsch H et al (1999) A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99(2):189–198

    Article  PubMed  CAS  Google Scholar 

  • Franceschini P (1929) Presence of connective tissue elements in the central nervous system; peculiarities in structure of the pia-arachnoid and choroid plexi; so-called ‘hematoencephalic barrier’. Sperimentale 83:419–445

    Google Scholar 

  • Frankel H, Kazemi H (1983) Regulation of CSF composition--blocking chloride-bicarbonate exchange. J Appl Physiol 55(1 Pt 1):177–182

    Article  PubMed  CAS  Google Scholar 

  • Gassama-Diagne A et al (2006) Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8(9):963–970

    Article  PubMed  CAS  Google Scholar 

  • Ghersi-Egea JF et al (2018) Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 135(3):337–361

    Article  PubMed  CAS  Google Scholar 

  • Goehring NW (2014) PAR polarity: from complexity to design principles. Exp Cell Res 328(2):258–266

    Article  PubMed  CAS  Google Scholar 

  • Gorecki DC et al (1997) Differential expression of syntrophins and analysis of alternatively spliced dystrophin transcripts in the mouse brain. Eur J Neurosci 9(5):965–976

    Article  PubMed  CAS  Google Scholar 

  • Gregoriades JMC et al (2019) Genetic and pharmacologic inactivation of apical NKCC1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 316(4):C525–C544

    Article  PubMed  Google Scholar 

  • Grindstaff KK et al (1998) Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93(5):731–740

    Article  PubMed  CAS  Google Scholar 

  • Haeckl E (1859) Beiträge zur nurmalen und pathologischen Anatomie des Plexus chorioid. Virchows Archiv A Pathol Anat 16:253–289

    Article  Google Scholar 

  • Haenggi T, Fritschy JM (2006) Role of dystrophin and utrophin for assembly and function of the dystrophin glycoprotein complex in non-muscle tissue. Cell Mol Life Sci 63(14):1614–1631

    Article  PubMed  CAS  Google Scholar 

  • Haselbach M et al (2001) Porcine Choroid plexus epithelial cells in culture: regulation of barrier properties and transport processes. Microsc Res Tech 52(1):137–152

    Article  PubMed  CAS  Google Scholar 

  • Hebert JM, Mishina Y, McConnell SK (2002) BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 35(6):1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi Y et al (2009) Interaction between PAR-3 and the aPKC-PAR-6 complex is indispensable for apical domain development of epithelial cells. J Cell Sci 122(Pt 10):1595–1606

    Article  PubMed  CAS  Google Scholar 

  • Huang X et al (2009) Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development 136(15):2535–2543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X et al (2010) Transventricular delivery of sonic hedgehog is essential to cerebellar ventricular zone development. Proc Natl Acad Sci U S A 107(18):8422–8427

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes AL, Pakhomova A, Brown PD (2010) Regulatory volume increase in epithelial cells isolated from the mouse fourth ventricle choroid plexus involves Na+-H+ exchange but not Na+-K+-2Cl- cotransport. Brain Res 1323:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hunter NL, Dymecki SM (2007) Molecularly and temporally separable lineages form the hindbrain roof plate and contribute differentially to the choroid plexus. Development 134(19):3449–3460

    Article  PubMed  CAS  Google Scholar 

  • Hurov JB, Watkins JL, Piwnica-Worms H (2004) Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14(8):736–741

    Article  PubMed  CAS  Google Scholar 

  • Hworostuchin W (1911) Zur Frage über den Bau des Plexus chorioideus. Arch Mikrosk Anat 77:232–244

    Article  Google Scholar 

  • Iliff JJ et al (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123(3):1299–1309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobs S et al (2008) Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci U S A 105(1):311–316

    Article  PubMed  Google Scholar 

  • Javaheri S, Wagner KR (1993) Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. J Clin Invest 92(5):2257–2261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johanson CE, Parandoosh Z, Dyas ML (1992) Maturational differences in acetazolamide-altered pH and HCO3 of choroid plexus, cerebrospinal fluid, and brain. Am J Phys 262(5 Pt 2):R909–R914

    CAS  Google Scholar 

  • Johansson PA et al (2005) Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res 322(3):353–364

    Article  PubMed  CAS  Google Scholar 

  • Johansson PA et al (2007) Expression and localization of P2 nucleotide receptor subtypes during development of the lateral ventricular choroid plexus of the rat. Eur J Neurosci 25(11):3319–3331

    Article  PubMed  CAS  Google Scholar 

  • Johansson P, Dziegielewska K, Saunders N (2008) Low levels of Na, K-ATPase and carbonic anhydrase II during choroid plexus development suggest limited involvement in early CSF secretion. Neurosci Lett 442(1):77–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Junet W (1926) Terminaisons nerveuses intraépithéliales dans les plexus choroides de la souris. C R Soc Biol 95:1397–1398

    Google Scholar 

  • Kaji C et al (2012) The expression of podoplanin and classic cadherins in the mouse brain. J Anat 220(5):435–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kajita H, Brown PD (1997) Inhibition of the inward-rectifying Cl- channel in rat choroid plexus by a decrease in extracellular pH. J Physiol 498(Pt 3):703–707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalaria RN et al (1998) Identification and expression of the Na+/H+ exchanger in mammalian cerebrovascular and choroidal tissues: characterisation by amiloride-sensitive [3H]MIA binding and RT-PCR analysis. Brain Res Mol Brain Res 58:178–187

    Article  PubMed  CAS  Google Scholar 

  • Kallio H et al (2006) Expression of carbonic anhydrases IX and XII during mouse embryonic development. BMC Dev Biol 6:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalwaryiski EB (1924) Sur la membrane basale et la bordure en brosse de cellules épithéliales des plexus choroides. C R Soc Biol 90:903–904

    Google Scholar 

  • Kanaka C et al (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104(4):933–946

    Article  PubMed  CAS  Google Scholar 

  • Karadsheh MF et al (2004) Localization of the KCC4 potassium-chloride cotransporter in the nervous system. Neuroscience 123(2):381–391

    Article  PubMed  CAS  Google Scholar 

  • Kasper M, Karsten U, Stosiek P (1986) Detection of cytokeratin(s) in epithelium of human plexus choroideus by monoclonal antibodies. Acta Histochem 78(1):101–103

    Article  PubMed  CAS  Google Scholar 

  • Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 56(1):47–53

    Article  PubMed  CAS  Google Scholar 

  • Keep RF, Jones HC, Cawkwell RD (1986) A morphometric analysis of the development of the fourth ventricle choroid plexus in the rat. Brain Res 392(1–2):77–85

    Article  PubMed  CAS  Google Scholar 

  • Keep RF, Xiang J, Betz AL (1994) Potassium cotransport at the rat choroid plexus. Am J Phys 267(6 Pt 1):C1616–C1622

    Article  CAS  Google Scholar 

  • Kibble JD, Tresize AO, Brown PD (1996) Properties of the cAMP-activated Cl- conductance in choroid plexus epithelial cells isolated from the rat. J Physiol 496:69–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kibble JD et al (1997) Whole-cell Cl- conductances in mouse choroid plexus epithelial cells do not require CFTR expression. Am J Phys 272:C1899–C1907

    Article  CAS  Google Scholar 

  • Kierbel A et al (2007) Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J Cell Biol 177(1):21–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korzhevskii DE (2000) Proliferative zones in the epithelium of the choroid plexuses of the human embryo brain. Neurosci Behav Physiol 30(5):509–512

    Article  PubMed  CAS  Google Scholar 

  • Kotera T, Brown PD (1994) Two types of potassium current in rat choroid plexus epithelial cells. Pflugers Arch 237:317–324

    Article  Google Scholar 

  • Kratzer I et al (2012) Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol 138(6):861–879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krug SM et al (2012) Charge-selective claudin channels. Ann N Y Acad Sci 1257:20–28

    Article  PubMed  CAS  Google Scholar 

  • Lagunowich LA et al (1992) Immunohistochemical and biochemical analysis of N-cadherin expression during CNS development. J Neurosci Res 32(2):202–208

    Article  PubMed  CAS  Google Scholar 

  • Lehtinen MK et al (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69(5):893–905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H et al (2002) Patterns of cation-chloride cotransporter expression during embryonic rodent CNS development. Eur J Neurosci 16(12):2358–2370

    Article  PubMed  Google Scholar 

  • Liedtke W et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3):525–535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindsey AE et al (1990) Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc Natl Acad Sci U S A 87(14):5278–5282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lippoldt A et al (2000) Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C. Neuroreport 11(7):1427–1431

    Article  PubMed  CAS  Google Scholar 

  • Louveau A et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Low SH et al (1996) Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells. Mol Biol Cell 7(12):2007–2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci 16(8):445–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luschka H (1855) Die Adergeflechte des menschlichen Gehirns. Georg Reimer, Berlin

    Google Scholar 

  • Luse SA (1956) Electron microscopic observations of the central nervous system. J Biophys Biochem Cytol 2(5):531–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makarova O et al (2003) Mammalian Crumbs3 is a small transmembrane protein linked to protein associated with Lin-7 (Pals1). Gene 302(1–2):21–29

    Article  PubMed  CAS  Google Scholar 

  • Marrs JA et al (1993) Distinguishing roles of the membrane-cytoskeleton and cadherin mediated cell-cell adhesion in generating different Na+,K(+)-ATPase distributions in polarized epithelia. J Cell Biol 123(1):149–164

    Article  PubMed  CAS  Google Scholar 

  • Martin C et al (2006) FGF2 plays a key role in embryonic cerebrospinal fluid trophic properties over chick embryo neuroepithelial stem cells. Dev Biol 297(2):402–416

    Article  PubMed  CAS  Google Scholar 

  • Masuzawa T et al (1981) Ultrastructural localization of carbonic anhydrase activity in the rat choroid plexus epithelial cell. Histochemistry 73(2):201–209

    Article  PubMed  CAS  Google Scholar 

  • Masuzawa T et al (1984) Immunohistochemical localization of Na+, K+-ATPase in the choroid plexus. Brain Res 302(2):357–362

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DS, Pease DC (1956) The electron microscopy of the choroid plexus. J Biophys Biochem Cytol 2(4):467–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meek WJ (1907) A study of the choroid plexus. J Comp Neurol Psychol 17:286–306

    Article  Google Scholar 

  • Miettinen M, Clark R, Virtanen I (1986) Intermediate filament proteins in choroid plexus and ependyma and their tumors. Am J Pathol 123(2):231–240

    PubMed  PubMed Central  CAS  Google Scholar 

  • Millar ID, Brown PD (2008) NBCe2 exhibits a 3 HCO3 - :1 Na+ stoichiometry in mouse choroid plexus epithelial cells. Biochem Biophys Res Commun 373:550–554

    Article  PubMed  CAS  Google Scholar 

  • Millar ID, Bruce JI, Brown PD (2007) Ion channel diversity, channel expression and function in the choroid plexuses. Cerebrospinal Fluid Res 4:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Millen JW, Rogers GE (1956) An electron microscopic study of the chorioid plexus in the rabbit. J Biophys Biochem Cytol 2(4):407–416

    Article  PubMed  CAS  Google Scholar 

  • Mollgard K, Saunders NR (1986) The development of the human blood-brain and blood-CSF barriers. Neuropathol Appl Neurobiol 12(4):337–358

    Article  PubMed  CAS  Google Scholar 

  • Murphy VA, Johanson CE (1989a) Alteration of sodium transport by the choroid plexus with amiloride. Biochim Biophys Acta 979(2):187–192

    Article  PubMed  CAS  Google Scholar 

  • Murphy VA, Johanson CE (1989b) Acidosis, acetazolamide, and amiloride: effects on 22Na transfer across the blood-brain and blood-CSF barriers. J Neurochem 52(4):1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Nag S, Begley DJ (2005) Blood–brain barrier, exchange of metabolites and gases. In: Kalimo H (ed) Pathology and genetics: cerebrovascular diseases. ISN Neuropathology Press, Basel, pp 22–29

    Google Scholar 

  • Nakamura N et al (1999) Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: implication for a functional coupling with Na+,K+-ATPase. Biochem J 342:329–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narita K et al (2010) Multiple primary cilia modulate the fluid transcytosis in choroid plexus epithelium. Traffic 11(2):287–301

    Article  PubMed  CAS  Google Scholar 

  • Narita K et al (2012) Proteomic analysis of multiple primary cilia reveals a novel mode of ciliary development in mammals. Biol Open 1(8):815–825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narita K et al (2015) TRPV4 regulates the integrity of the blood-cerebrospinal fluid barrier and modulates transepithelial protein transport. FASEB J 29(6):2247–2259

    Article  PubMed  CAS  Google Scholar 

  • Nattie EE, Adams JM (1988) DIDS decreases CSF HCO3- and increases breathing in response to CO2 in awake rabbits. J Appl Physiol (1985) 64(1):397–403

    Article  CAS  Google Scholar 

  • Netter FH (2014) Atlas of human anatomy, 6th edn. Saunders/Elsevier, Philadelphia, PA

    Google Scholar 

  • Nielsen CM, Dymecki SM (2010) Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus. Dev Biol 340(2):430–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen S et al (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90(15):7275–7279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohno H et al (1999) Mu1B, a novel adaptor medium chain expressed in polarized epithelial cells. FEBS Lett 449(2–3):215–220

    Article  PubMed  CAS  Google Scholar 

  • Oshio K et al (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 19(1):76–78

    Article  PubMed  CAS  Google Scholar 

  • Palay SL, Karlin LJ (1959) An electron microscopic study of the intestinal villus. I. The fasting animal. J Biophys Biochem Cytol 5(3):363–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parada C, Gato A, Bueno D (2008) All-trans retinol and retinol-binding protein from embryonic cerebrospinal fluid exhibit dynamic behaviour during early central nervous system development. Neuroreport 19(9):945–950

    Article  PubMed  Google Scholar 

  • Paulus W et al (1993) Characterization of integrin receptors in normal and neoplastic human brain. Am J Pathol 143(1):154–163

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pearson MM et al (2001) Localization of the K+-Cl- cotransporter, KCC3, in the central and peripheral nervous systems: expression in the choroid plexus, large neurons and white matter tracts. Neuroscience 103(2):481–491

    Article  PubMed  CAS  Google Scholar 

  • Pease DC (1956) Infolded basal plasma membranes found in epithelia noted for their water transport. J Biophys Biochem Cytol 2(4 Suppl):203–208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters A, Palay SL, Webster HD (1976) The fine structure of the nervous system. Saunders, Philadelphia

    Google Scholar 

  • Pettit A, Girard J (1901) Processus sécrétoires dans les cellules de revêtement des plexus choroïdes des ventricules latéraux, consécutifs à l’administration de la muscarine et de l’éther. Comptes Rendus de la Société de Biologie 53:825–828

    Google Scholar 

  • Plotkin MD et al (1997) Expression of the Na+-K+-2Cl cotransporter BSC2 in the nervous system. Am J Phys 272(1 Pt 1):C173–C183

    Article  CAS  Google Scholar 

  • Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Phys 213(4):1031–1038

    Article  CAS  Google Scholar 

  • Praetorius J, Nielsen S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 291(1):C59–c67

    Article  PubMed  CAS  Google Scholar 

  • Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Praetorius J, Nejsum LN, Nielsen S (2004a) A SCL4A10 gene product maps selectively to the basolateral plasma membrane of choroid plexus epithelial cells. Am J Physiol Cell Physiol 286(3):C601–C610

    Article  PubMed  CAS  Google Scholar 

  • Praetorius J, Nejsum LN, Nielsen S (2004b) A SLC4A10 gene product maps selectively to the basolateral membrane of choroid plexus epithelial cells. Am J Phys 286:C601–C610

    Article  CAS  Google Scholar 

  • Preston D et al (2018) Activation of TRPV4 stimulates transepithelial ion flux in a porcine choroid plexus cell line. Am J Physiol Cell Physiol 315(3):C357–C366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Purkinje JE (1836) Ueber Flimmerbewegungen im Gehirn. Archiv für Anatomie, Physiologie und Wissenschaftliche Medicin, pp 289–291

    Google Scholar 

  • Raballo R et al (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 20(13):5012–5023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robin C (1859) Recherches sur quelques particularite’s de la structure des capillaires de l’encephale. J Physiol Homme Anim 2:537–548

    Google Scholar 

  • Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15(4):225–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roepke TK et al (2011) KCNE2 forms potassium channels with KCNA3 and KCNQ1 in the choroid plexus epithelium. FASEB J 25:4264–4273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenthal R et al (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123(Pt 11):1913–1921

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal R et al (2017) Claudin-2-mediated cation and water transport share a common pore. Acta Physiol (Oxf) 219(2):521–536

    Article  CAS  Google Scholar 

  • Saito Y, Wright E (1984) Regulation of bicarbonate transport across the brush border membrane of the bull-frog choroid plexus. J Physiol 350:327–342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salehi Z et al (2009) Insulin-like growth factor-1 and insulin-like growth factor binding proteins in cerebrospinal fluid during the development of mouse embryos. J Clin Neurosci 16(7):950–953

    Article  PubMed  CAS  Google Scholar 

  • Schapiro B (1931) Über die Innervation des Plexus chorioideus. Zeitschrift für die Gesamte Neurologie und Psychiatrie 136:539–547

    Article  Google Scholar 

  • Schmid H (1929) Anatomischer Bau und Entwicklung der Plexus chorioidei in der Wirbeltierreihe und beim Menschen. Zeitschrift fur Mikroskopisch-Anatomische Forschung 16:413–498

    Google Scholar 

  • Schnermann J et al (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A 95(16):9660–9664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Segal MB, Burgess AM (1974) A combined physiological and morphological study of the secretory process in the rabbit choroid plexus. J Cell Sci 14(2):339–350

    PubMed  CAS  Google Scholar 

  • Sharma N et al (2006) Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J Cell Biol 173(6):937–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shewan A, Eastburn DJ, Mostov K (2011) Phosphoinositides in cell architecture. Cold Spring Harb Perspect Biol 3(8):a004796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siegel GJ et al (1984) Purification of mouse brain (Na+ + K+)-ATPase catalytic unit, characterization of antiserum, and immunocytochemical localization in cerebellum, choroid plexus, and kidney. J Histochem Cytochem 32(12):1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Speake T et al (2002) Inward-rectifying anion channels are expressed in the epithelial cells of choroid plexus isolated from ClC-2 ‘knock-out’ mice. J Physiol 539:385–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Speake T, Kibble JD, Brown PD (2004) Kv1.1 and Kv1.3 channels contribute to the delayed-rectifying K+ conductance in rat choroid plexus epithelial cells. Am J Phys 286:C611–C620

    Article  CAS  Google Scholar 

  • Spector R et al (2015) A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol 267:78–86

    Article  PubMed  Google Scholar 

  • Steffensen AB et al (2018) Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun 9(1):2167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinemann A et al (2016) Claudin-1, -2 and -3 are selectively expressed in the epithelia of the choroid plexus of the mouse from early development and into adulthood while Claudin-5 is restricted to endothelial cells. Front Neuroanat 10:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stock AD et al (2019) Tertiary lymphoid structures in the choroid plexus in neuropsychiatric lupus. JCI Insight 4(11):e124203

    Article  PubMed Central  Google Scholar 

  • Stöhr P (1922) Über die Innervation der Pia mater und des Plexus chorioideus des Menschen. Z Anat Entwicklungsgesch 63:562–607

    Article  Google Scholar 

  • Stoops EH, Caplan MJ (2014) Trafficking to the apical and basolateral membranes in polarized epithelial cells. J Am Soc Nephrol 25(7):1375–1386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Studnicka FK (1900) Untersuchungen über den Bau des Ependyms der nervösen Zentralorgane. Anatomische Hefte 15:303–430

    Article  Google Scholar 

  • Sun SQ, Hashimoto PH (1991) Venous microvasculature of the pineal body and choroid plexus in the rat. J Electron Microsc 40(1):29–33

    CAS  Google Scholar 

  • Sundwall I (1917) The chorioid plexus with special reference to interstitial granular cells. Anat Rec 12:221–254

    Article  Google Scholar 

  • Tennyson VM, Pappas GD (1961) Electron microscope studies of the developing telencephalic choroid plexus in normal and hydrocephalic rabbits. In: Fields WS, Desmond MM (eds) Disorders of the developing nervous system. Thomas, Springfield, pp 267–318

    Google Scholar 

  • ter Beest MB et al (2005) The role of syntaxins in the specificity of vesicle targeting in polarized epithelial cells. Mol Biol Cell 16(12):5784–5792

    Article  PubMed  PubMed Central  Google Scholar 

  • Urabe N et al (2002) Basement membrane type IV collagen molecules in the choroid plexus, pia mater and capillaries in the mouse brain. Arch Histol Cytol 65(2):133–143

    Article  PubMed  CAS  Google Scholar 

  • Vallon V, Verkman AS, Schnermann J (2000) Luminal hypotonicity in proximal tubules of aquaporin-1-knockout mice. Am J Physiol Renal Physiol 278(6):F1030–F1033

    Article  PubMed  CAS  Google Scholar 

  • Van Breemen VL, Clemente CD (1955) Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope. J Biophys Biochem Cytol 1(2):161–166

    Article  PubMed Central  Google Scholar 

  • Van Huysse JW et al (2012) Salt-induced hypertension in a mouse model of Liddle syndrome is mediated by epithelial sodium channels in the brain. Hypertension 60(3):691–696

    Article  PubMed  CAS  Google Scholar 

  • Virchow R (1851) Ueber die Erweiterung kleinerer Gefaesse. Archiv Pathol Anat Physiol Klin Med 3:427–462

    Article  Google Scholar 

  • Voetmann E (1949) On the structure and surface area of the human choroid plexuses – a quantitative anatomivcal study. Acta Anat 8:20–32

    Article  Google Scholar 

  • Vorbrodt AW, Dobrogowska DH (2003) Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Brain Res Rev 42(3):221–242

    Article  PubMed  CAS  Google Scholar 

  • Weiger T et al (1986) The angioarchitecture of the choroid plexus of the lateral ventricle of the rabbit. A scanning electron microscopic study of vascular corrosion casts. Brain Res 378(2):285–296

    Article  PubMed  CAS  Google Scholar 

  • Weir AP et al (2002) A- and B-utrophin have different expression patterns and are differentially up-regulated in mdx muscle. J Biol Chem 277(47):45285–45290

    Article  PubMed  CAS  Google Scholar 

  • Weisz OA, Rodriguez-Boulan E (2009) Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 122(Pt 23):4253–4266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welch K (1963) Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Phys 205:617–624

    Article  CAS  Google Scholar 

  • Wislocki GB, Ladman AJ (1958) The fine structure of the mammalian choroid plexus. In: Wolsteinholme GEW, O’Connor CM (eds) The cerebrospinal fluid. Little, Brown, & Company, Boston, pp 55–79

    Google Scholar 

  • Wolburg H et al (2001) Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett 307(2):77–80

    Article  PubMed  CAS  Google Scholar 

  • Wright EM (1972) Mechanisms of ion transport across the choroid plexus. J Physiol 226(2):545–571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu B, Guo W (2015) The exocyst at a glance. J Cell Sci 128(16):2957–2964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Q et al (1998) Functional demonstration of Na+-K+-2Cl- cotransporter activity in isolated, polarized choroid plexus cells. Am J Phys 275(6 Pt 1):C1565–C1572

    Article  CAS  Google Scholar 

  • Wu H et al (2007) PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell 28(5):886–898

    Article  PubMed  CAS  Google Scholar 

  • Xiang Z, Burnstock G (2005) Expression of P2X receptors in rat choroid plexus. Neuroreport 16(9):903–907

    Article  PubMed  CAS  Google Scholar 

  • Yeaman C, Grindstaff KK, Nelson WJ (1999) New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 79(1):73–98

    Article  PubMed  CAS  Google Scholar 

  • Zeuthen T (1991) Secondary active transport of water across ventricular cell membrane of choroid plexus epithelium of Necturus maculosus. J Physiol 444:153–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeuthen T (1994) Cotransport of K+, Cl and H2O by membrane proteins from choroid plexus epithelium of Necturus maculosus. J Physiol 478(Pt 2):203–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeuthen T, Wright EM (1981) Epithelial potassium transport: tracer and electrophysiological studies in choroid plexus. J Membr Biol 60:105–128

    Article  PubMed  CAS  Google Scholar 

  • Zeuthen T et al (2016) Structural and functional significance of water permeation through cotransporters. Proc Natl Acad Sci U S A 113(44):E6887–E6894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helle Damkier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damkier, H., Praetorius, J. (2020). Structure of the Mammalian Choroid Plexus. In: Praetorius, J., Blazer-Yost, B., Damkier, H. (eds) Role of the Choroid Plexus in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0536-3_1

Download citation

Publish with us

Policies and ethics