Skip to main content

Dynamical Diagnosis: A Comparison of Quasigeostrophy and Ertel Potential Vorticity

  • Chapter
Synoptic—Dynamic Meteorology and Weather Analysis and Forecasting

Part of the book series: Meteorological Monographs ((METEOR,volume 33, No. 55))

Abstract

Advances in computer power, new forecasting challenges, and new diagnostic techniques have brought about changes in the way atmospheric development and vertical motion are diagnosed in an operational setting. Many of these changes, such as improved model skill, model resolution, and ensemble forecasting, have arguably been detrimental to the ability of forecasters to understand and respond to the evolving atmosphere. The use of nondivergent wind in place of geostrophic wind would be a step in the right direction, but the advantages of potential vorticity suggest that its widespread adoption as a diagnostic tool on the west side of the Atlantic is overdue. Ertel potential vorticity (PV), when scaled to be compatible with pseudopotential vorticity, is generally similar to pseudopotential vorticity, so forecasters accustomed to quasigeostrophic reasoning through the height tendency equation can transfer some of their intuition into the Ertel-PV framework. Indeed, many of the differences between pseudopotential vorticity and Ertel potential vorticity are consequences of the choice of definition of quasigeostrophic PV and are not fundamental to the quasigeostrophic system. Thus, at its core, PV thinking is consistent with commonly used quasigeostrophic diagnostic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159–172.

    Article  Google Scholar 

  • Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 1397–1411.

    Article  Google Scholar 

  • Dixon, M. A. G., A. J. Thorpe, and K. A. Browning, 2003: Layerwise attribution of vertical motion and the influence of potentialvorticity anomalies on synoptic development. Quart. J. Roy. Meteor. Soc., 129, 1761–1778.

    Article  Google Scholar 

  • Durran, D. R., and L. W. Snellman, 1987: The diagnosis of synopticscale vertical motion in an operational environment. Wea. Forecasting, 2, 17–31.

    Article  Google Scholar 

  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 2577–2591.

    Article  Google Scholar 

  • Fehlmann, R., and H. C. Davies, 1997: Misforecasts of synoptic systems: Diagnosis by PV retrodiction. Mon. Wea. Rev., 125, 2247–2264.

    Article  Google Scholar 

  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 511 pp.

    Google Scholar 

  • Hoskins, B. J., and M. A. Pedder, 1980: The diagnosis of middle latitude synoptic development. Quart. J. Roy. Meteor. Soc., 106, 707–719.

    Article  Google Scholar 

  • -, M. E. McIntyre, and A. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 887–946.

    Article  Google Scholar 

  • Juckes, M., 1999: The structure of idealized upper-tropospheric shear lines. J. Atmos. Sci., 56, 2830–2845.

    Article  Google Scholar 

  • Jusem, J. C., and R. Atlas, 1998: Diagnostic evaluation of vertical motion forcing mechanisms by using Q-vector partitioning. Mon. Wea. Rev., 126, 2166–2184.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762–780.

    Article  Google Scholar 

  • -, B. D. Schmidt, and D. G. Duffy, 1992: Quasigeostrophic vertical motions diagnosed from along-and cross-isentrope components of the Q vector. Mon. Wea. Rev., 120, 731–741.

    Article  Google Scholar 

  • Massacand, A. C., H. Wernli, and H. C. Davies, 2001: Influence of upstream diabatic heating upon an Alpine event of heavy precipitation. Mon. Wea. Rev., 129, 2822–2828.

    Article  Google Scholar 

  • Mohebalhojeh, A. R., 2002: On shallow-water potential-vorticity inversion by Rossby-number expansions. Quart. J. Roy. Meteor. Soc., 128, 679–694.

    Article  Google Scholar 

  • Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 2555–2579.

    Article  Google Scholar 

  • Muraki, D. J., C. Snyder, and R. Rotunno, 1999: The next-order corrections to quasigeostrophic theory. J. Atmos. Sci., 56, 1547–1560.

    Article  Google Scholar 

  • Nielsen-Gammon, J. W., 1995: Dynamical conceptual models of upper-level mobile trough formation: Comparison and application. Tellus, 47A, 705–721.

    Google Scholar 

  • -, 2001: A visualization of the global dynamic tropopause. Bull. Amer. Meteor. Soc., 82, 1151–1167.

    Article  Google Scholar 

  • -, and R. J. Lefevre, 1996: Piecewise tendency diagnosis of dynamical processes governing the development of an upper-tropospheric mobile trough. J. Atmos. Sci., 53, 3120–3142.

    Article  Google Scholar 

  • -, and D. A. Gold, 2008: Potential vorticity diagnosis in the quasigeostrophic and nonlinear balance systems. J. Atmos. Sci., 65, 172–188.

    Article  Google Scholar 

  • Orlanski, I., and J. Sheldon, 1993: A case of downstream baroclinic development over western North America. Mon. Wea. Rev., 121, 2929–2950.

    Article  Google Scholar 

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-Verlag, 710 pp.

    Google Scholar 

  • Sanders, F., 1971: Analytic solutions of the nonlinear omega and vorticity equations for a structurally simple model of disturbances in the baroclinic westerlies. Mon. Wea. Rev., 99, 393–407.

    Article  Google Scholar 

  • -, and B. J. Hoskins, 1990: An easy method for estimation of Q-vectors from weather maps. Wea. Forecasting, 5, 346–353.

    Article  Google Scholar 

  • Sutcliffe, R. C., 1947: A contribution to the problem of development. Quart. J. Roy. Meteor. Soc., 73, 370–383.

    Article  Google Scholar 

  • Tan, Z.-M., F. Zhang, R. Rotunno, and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 1794–1804.

    Article  Google Scholar 

  • Thorpe, A. J., 1986: Synoptic-scale disturbances with circular symmetry. Mon. Wea. Rev., 114, 1384–1389.

    Article  Google Scholar 

  • -, and C. H. Bishop, 1995: Potential vorticity and the electrostatics analogy: Ertel—Rossby formulation. Quart. J. Roy. Meteor. Soc., 121, 1477–1495.

    Google Scholar 

  • Trenberth, K. E., 1978: On the interpretation of the diagnostic quasigeostrophic omega equation. Mon. Wea. Rev., 106, 131–137.

    Article  Google Scholar 

  • Vallis, G. K., 1996: Potential vorticity inversion and balanced equations of motion for rotating and stratified flows. Quart. J. Roy. Meteor. Soc., 122, 291–322.

    Article  Google Scholar 

  • Warn, T., O. Bokhove, T. G. Shepherd, and G. K. Vallis, 1995: Rossby number expansions, slaving principles, and balanced dynamics. Quart. J. Roy. Meteor. Soc., 121, 723–739.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Nielsen-Gammon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Meteorological Society

About this chapter

Cite this chapter

Nielsen-Gammon, J.W., Gold, D.A. (2008). Dynamical Diagnosis: A Comparison of Quasigeostrophy and Ertel Potential Vorticity. In: Bosart, L.F., Bluestein, H.B. (eds) Synoptic—Dynamic Meteorology and Weather Analysis and Forecasting. Meteorological Monographs, vol 33, No. 55. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-0-933876-68-2_9

Download citation

Publish with us

Policies and ethics