Perspectives on Fred Sanders’ Research on Cold Fronts

  • David M. Schultz
Part of the Meteorological Monographs book series (METEOR, volume 33, No. 55)


One characteristic of Fred Sanders’ research is his ability to take a topic that is believed to be well understood by the research community and show that interesting research problems still exist. Among Sanders’ considerable contributions to synoptic meteorology, those concerned with surface cold fronts have been especially influential. After a brief historical review of fronts and frontal analysis, this chapter presents three stages in Sanders’ career when he performed research on the structure, dynamics, and analysis of surface cold fronts. First, his 1955 paper, “An investigation of the structure and dynamics of an intense surface frontal zone,” was the first study to discuss quantitatively the dynamics of a surface cold front. In the 1960s, Sanders and his students further examined the structure of cold fronts, resulting in the unpublished 1967 report to the National Science Foundation, “Frontal structure and the dynamics of frontogenesis.” For a third time in his career, Sanders published several papers (1995–2005) revisiting the structure and dynamics of cold fronts. His 1967 and 1995-2005 work raises the question of the origin and dynamics of the surface pressure trough and/or wind shift that sometimes precedes the temperature gradient (hereafter called a prefrontal trough or prefrontal wind shift, respectively). Sanders showed that the relationship between this prefrontal feature and the temperature gradient is fundamental to the strength of the front. When the wind shift is coincident with the temperature gradient, frontogenesis (strengthening of the front) results; when the wind shift lies ahead of the temperature gradient, frontolysis (weakening of the front) results. A number of proposed mechanisms for the formation of prefrontal troughs and prefrontal wind shifts exist. Consequently, much research remains to be performed on these topics.


Cold Front Frontal Zone Frontal Structure Frontal Research Frontal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball, F. K., 1960: A theory of fronts in relation to surface stress. Quart. J. Roy. Meteor. Soc., 86, 51–66.Google Scholar
  2. Bannon, P. R., and M. Mak, 1984: Diabatic quasi-geostrophic surface frontogenesis. J. Atmos. Sci., 41, 2189–2201.Google Scholar
  3. Bergeron, T., 1937: On the physics of fronts. Bull. Amer. Meteor. Soc., 18, 265–275.Google Scholar
  4. -, 1959: Methods in scientific weather analysis and forecasting: An outline in the history of ideas and hints at a program. The Atmosphere and Sea in Motion: Scientific Contributions to the Rossby Memorial Volume, B. Bolin, Ed., Rockefeller Institute Press, 440–474.Google Scholar
  5. Bjerknes, J., 1917: Über die Fortbewegung der Konvergenz-und Divergenzlinien. Meteor. Z., 34, 345–349.Google Scholar
  6. -, 1919: On the structure of moving cyclones. Geophys. Publ., 1 (2), 1–8.Google Scholar
  7. -, and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geophys. Publ., 3 (1), 3–18.Google Scholar
  8. Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. 2, Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press, 594 pp.Google Scholar
  9. -, 2008: Surface boundaries of the southern Plains: Their role in the initiation of convective storms. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc.Google Scholar
  10. Blumen, W., 1980: A comparison between the Hoskins-Bretherton model of frontogenesis and the analysis of an intense surface frontal zone. J. Atmos. Sci., 37, 64–77.Google Scholar
  11. -, 1997: A model of inertial oscillations with deformation frontogenesis. J. Atmos. Sci., 54, 2681–2692.Google Scholar
  12. -, and R. Wu, 1983: Baroclinic instability and frontogenesis with Ekman boundary layer dynamics incorporating the geostrophic momentum approximation. J. Atmos. Sci., 40, 2630–2637.Google Scholar
  13. Bond, N. A., and R. G. Fleagle, 1985: Structure of a cold front over the ocean. Quart. J. Roy. Meteor. Soc., 111, 739–759.Google Scholar
  14. -, and-, 1988: Prefrontal and postfrontal boundary layer processes over the ocean. Mon. Wea. Rev., 116, 1257–1273.Google Scholar
  15. -, and M. A. Shapiro, 1991: Research aircraft observations of the mesoscale and microscale structure of a cold front over the eastern Pacific Ocean. Mon. Wea. Rev., 119, 3080–3094.Google Scholar
  16. Bosart, L. F., 1989: Automation: Has its time really come? Wea. Forecasting, 4, 271.Google Scholar
  17. -, 2003: Whither the weather analysis and forecasting process? Wea. Forecasting, 18, 520–529.Google Scholar
  18. -, 2008: Coastal fronts, cold air damming, and fronts adjacent to higher terrain. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc.Google Scholar
  19. Boyd, J. P., 1992: The energy spectrum of fronts: Time evolution of shocks in Burgers’ equation. J. Atmos. Sci., 49, 128–139.Google Scholar
  20. Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones, The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.Google Scholar
  21. -, and T. W. Harrold, 1970: Air motion and precipitation growth at a cold front. Quart. J. Roy. Meteor. Soc., 96, 369–389.Google Scholar
  22. Brundidge, K. C., 1965: The wind and temperature structure of nocturnal cold fronts in the first 1,420 feet. Mon. Wea. Rev., 93, 587–603.Google Scholar
  23. Bryan, G. H., and J. M. Fritsch, 2000: Diabatically driven discrete propagation of surface fronts: A numerical analysis. J. Atmos. Sci., 57, 2061–2079.Google Scholar
  24. Carbone, R. E., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci., 39, 258–279.Google Scholar
  25. Carlson, T. N., 1991: Mid-Latitude Weather Systems. Harper Collins, 507 pp.Google Scholar
  26. Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–162.Google Scholar
  27. Chen, C., and C. Bishop, 1999: Reply. Mon. Wea. Rev., 127, 258–263.Google Scholar
  28. -,-, G. S. Lai, and W.-K. Tao, 1997: Numerical simulations of an observed narrow cold-frontal rainband. Mon. Wea. Rev., 125, 1027–1045.Google Scholar
  29. Cho, H.-R., and J. N. Koshyk, 1989: Dynamics of frontal discontinuities in the semigeostrophic theory. J. Atmos. Sci., 46, 2166–2177.Google Scholar
  30. Clarke, L. C., and R. J. Renard, 1966: The U.S. Navy numerical frontal analysis scheme: Further development and a limited evaluation. J. Appl. Meteor., 5, 764–777.Google Scholar
  31. Clarke, R. H., 1961: Mesostructure of dry cold fronts over featureless terrain. J. Meteor., 18, 715–735.Google Scholar
  32. Cochran, H., N. Thomas, and F. C. Parmenter, 1970: “Rope” cloud. Mon. Wea. Rev., 98, 612–613.Google Scholar
  33. Colby, F. P., Jr., and K. L. Seitter, 1987: A new analysis technique for fronts. Extended Abstracts, Third Conf. on Mesoscale Meteorology, Vancouver, BC, Canada, Amer. Meteor. Soc., 156–157.Google Scholar
  34. Colle, B. A., 2003: Numerical simulations of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the northeast United States. Mon. Wea. Rev., 131, 2905–2926.Google Scholar
  35. Cullen, M. J. P., 1983: Solutions to a model of a front forced by deformation. Quart. J. Roy. Meteor. Soc., 109, 565–573.Google Scholar
  36. -, and R. J. Purser, 1984: An extended Lagrangian theory of semigeostrophic frontogenesis. J. Atmos. Sci., 41, 1477–1497.Google Scholar
  37. Davies, H. C., 1997: Emergence of the mainstream cyclogenesis theories. Meteor. Z., 6, 261–274.Google Scholar
  38. Dorian, P. B., S. E. Koch, and W. C. Skillman, 1988: The relationship between satellite-inferred frontogenesis and squall line formation. Wea. Forecasting, 3, 319–342.Google Scholar
  39. Doswell, C. A., III, 2004: Weather forecasting by humans-Heuristics and decision making. Wea. Forecasting, 19, 1115–1126.Google Scholar
  40. -, L. R. Lemon, and R. A. Maddox, 1981: Forecaster training-A review and analysis. Bull. Amer. Meteor. Soc., 62, 983–988.Google Scholar
  41. Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 33–52.Google Scholar
  42. Emanuel, K. A., 1985a: What limits front formation? Nature, 315, 99.Google Scholar
  43. -, 1985b: Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sci., 42, 1062–1071.Google Scholar
  44. -, 2008: Back to Norway. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc.Google Scholar
  45. Ficker, H., 1923: Polarfront, Aufbav, Entstehung und Lebensgeschichte der Zyklonen (Polar front, structure, genesis and life cycle of cyclones). Meteor. Z., 40, 65–79.Google Scholar
  46. Fleagle, R. G., and W. A. Nuss, 1985: The distribution of surface fluxes and boundary layer divergence in midlatitude ocean storms. J. Atmos. Sci., 42, 784–799.Google Scholar
  47. -, N. A. Bond, and W. A. Nuss, 1988: Atmosphere-ocean interaction in mid-latitude storms. Meteor. Atmos. Phys., 38, 50–63.Google Scholar
  48. Friedman, R. M., 1989: Appropriating the Weather: Vilhelm Bjerknes and the Construction of a Modern Meteorology. Cornell University Press, 251 pp.Google Scholar
  49. Gall, R. L., R. T. Williams, and T. L. Clark, 1987: On the minimum scale of surface fronts. J. Atmos. Sci., 44, 2562–2574.Google Scholar
  50. German, K. E., 1959: An investigation of the occlusion process near the Earth’s surface. M.S. thesis, Dept. of Meteorology, University of Washington, 46 pp.Google Scholar
  51. Gidel, L. T., 1978: Simulation of the differences and Similanties of warm and cold surface frontogenesis. J. Geophy. Res., 83, 915–928.Google Scholar
  52. Godske, C. L., T. Bergeron, J. Bjerknes, and R. C. Bundgaard, 1957: Dynamic Meteorology and Weather Forecasting. Amer. Meteor. Soc., 800 pp.Google Scholar
  53. Godson, W. L., 1951: Synoptic properties of frontal surfaces. Quart. J. Roy. Meteor. Soc., 77, 633–653.Google Scholar
  54. Gold, E., 1935: Fronts and occlusions. Quart. J. Roy. Meteor. Soc., 61, 107–157.Google Scholar
  55. Gu, W., and Q. Xu, 2000: Baroclinic Eady wave and fronts. Part III: Unbalanced dynamics-Departures from viscous semigeostrophy. J. Atmos. Sci., 57, 3414–3425.Google Scholar
  56. Gyakum, J. R., L. F. Bosart, and D. M. Schultz, 1999: The Tenth Cyclone Workshop. Bull. Amer. Meteor. Soc., 80, 285–290.Google Scholar
  57. Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 37–65.Google Scholar
  58. Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1990: Cold fronts aloft and the forecasting of precipitation and severe weather east of the Rocky Mountains. Wea. Forecasting, 5, 613–626.Google Scholar
  59. -,-, and-, 1996: A new conceptual model for cyclones generated in the lee of the Rocky Mountains. Bull. Amer. Meteor. Soc., 77, 1169–1178.Google Scholar
  60. Hoffman, E., 2008: Surface potential temperature as an analysis and forecasting tool. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc.Google Scholar
  61. Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131–151.Google Scholar
  62. ,-1983: Dynamical processes in the atmosphere and the use of models. Quart. J. Roy. Meteor. Soc., 109, 1–21.Google Scholar
  63. -, and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 11–37.Google Scholar
  64. Hsie, E.-Y., R. A. Anthes, and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 2581–2594.Google Scholar
  65. Huber-Pock, F., and Ch. Kress, 1989: An operational model of objective frontal analysis based on ECMWF products. Meteor. Atmos. Phys., 40, 170–180.Google Scholar
  66. Janes, S. A., H. W. Brandli, and J. W. Orndorff, 1976: “The blue line” depicted on satellite imagery. Mon. Wea. Rev., 104, 1178–1181.Google Scholar
  67. Kessler, E., 1964: Purposes and programs of the National Severe Storms Laboratory, Norman, Oklahoma. National Severe Storms Laboratory Rep. 23, 17 pp. [Available from National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069.]Google Scholar
  68. -, 1965: Purposes and program of the U.S. Weather Bureau National Severe Storms Laboratory, Norman, Oklahoma. Trans. Amer. Geophys. Union, 46, 389–397.Google Scholar
  69. -, 2008: Reflections on meteorology then and now, and with Fred Sanders. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc.Google Scholar
  70. Keyser, D., 1986: Atmospheric fronts: An observational perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 216–258.Google Scholar
  71. -, and R. A. Anthes, 1982: The influence of planetary boundary layer physics on frontal structure in the Hoskins-Bretherton horizontal shear model. J. Atmos. Sci., 39, 1783–1802.Google Scholar
  72. -, and-, 1986: Comments on “Frontogenesis in a moist semigeostrophic model.” J. Atmos. Sci., 43, 1051–1054.Google Scholar
  73. -, and M. J. Pecnick, 1987: The effect of along-front temperature variation in a two-dimensional primitive equation model of surface frontogenesis. J. Atmos. Sci., 44, 577–604.Google Scholar
  74. -, and L.W. Uccellini, 1987: Regional models: Emerging research tools for synoptic meteorologists. Bull. Amer. Meteor. Soc., 68, 306–320.Google Scholar
  75. -, M. A. Shapiro, and D. J. Perkey, 1978: An examination of frontal structure in a fine-mesh primitive equation model for numerical weather prediction. Mon. Wea. Rev., 106, 1112–1124.Google Scholar
  76. Kirk, T. H., 1966: Some aspects of the theory of fronts and frontal analysis. Quart. J. Roy. Meteor. Soc., 92, 374–381.Google Scholar
  77. Koch, S. E., 1984: The role of an apparent mesoscale frontogenetic circulation in squall line initiation. Mon. Wea. Rev., 112, 2090–2111.Google Scholar
  78. -, J. T. McQueen, and V. M. Karyampudi, 1995: A numerical study of the effects of differential cloud cover on cold frontal structure and dynamics. J. Atmos. Sci., 52, 937–964.Google Scholar
  79. Kocin, P. J., D. A. Olson, A. C. Wick, and R. D. Harner, 1991: Surface weather analysis at the National Meteorological Center: Current procedures and future plans. Wea. Forecasting, 6, 289–298.Google Scholar
  80. Koshyk, J. N., and H.-R. Cho, 1992: Dynamics of a mature front in a uniform potential vorticity semigeostrophic model. J. Atmos. Sci., 49, 497–510.Google Scholar
  81. Kuhn, T. S., 1970: The Structure of Scientific Revolutions. 2d ed. University of Chicago Press, 210 pp.Google Scholar
  82. Kutzbach, G., 1979: The Thermal Theory of Cyclones. Amer. Meteor. Soc., 255 pp.Google Scholar
  83. Ligda, M. G. H., and S. G. Bigler, 1958: Radar echoes from a cloudless cold front. J. Meteor., 15, 494–501.Google Scholar
  84. Locatelli, J. D., M. T. Stoelinga, and P. V. Hobbs, 2002: Organization and structure of clouds and precipitation on the mid-Atlantic coast of the United States. Part VII: Diagnosis of a nonconvective rainband associated with a cold front aloft. Mon. Wea. Rev., 130, 278–297.Google Scholar
  85. Loomis, E., 1841: On the storm which was experienced throughout the United States about the 20th of December, 1836. Trans. Amer. Philos. Soc., 7, 125–163.Google Scholar
  86. Mak, M., and P. R. Bannon, 1984: Frontogenesis in a moist semigeostrophic model. J. Atmos. Sci., 41, 3485–3500.Google Scholar
  87. Malone, T. F., Ed., 1951: Compendium of Meteorology. Amer. Meteor. Soc., 1334 pp.Google Scholar
  88. Mass, C., 1991: Synoptic frontal analysis: Time for a reassessment? Bull. Amer. Meteor. Soc., 72, 348–363.Google Scholar
  89. McCann, D. W., and J. P. Whistler, 2001: Problems and solutions for drawing fronts objectively. Meteor. Appl., 8, 195–203.Google Scholar
  90. McIntyre, M. E., 1999: Numerical weather prediction: A vision of the future, updated still further. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 337–355.Google Scholar
  91. Miller, L. J., M. A. LeMone, W. Blumen, R. L. Grossman, N. Gamage, and R. J. Zamora, 1996: The low-level structure and evolution of a dry arctic front over the central United States. Part I: Mesoscale observations. Mon. Wea. Rev., 124, 1648–1675.Google Scholar
  92. Namias, J., 1983: The history of polar front and air mass concepts in the United States-An eyewitness account. Bull. Amer. Meteor. Soc., 64, 734–755.Google Scholar
  93. Neiman, P. J., F. M. Ralph, R. L. Weber, T. Uttal, L. B. Nance, and D. H. Levinson, 2001: Observations of nonclassical frontal propagation and frontally forced gravity waves adjacent to steep topography. Mon. Wea. Rev., 129, 2633–2659.Google Scholar
  94. Newton, C. W., and H. Rodebush Newton, 1999: The Bergen School concepts come to America. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 41–59.Google Scholar
  95. Ogura, Y., and D. Portis, 1982: Structure of the cold front observed in SESAME-AVE III and its comparison with the Hoskins-Bretherton frontogenesis model. J. Atmos. Sci., 39, 2773–2792.Google Scholar
  96. Orlanski, I., B. Ross, L. Polinsky, and R. Shaginaw, 1985: Advances in the theory of atmospheric fronts. Adv. Geophys., 28B, 223–252.Google Scholar
  97. Pagowski, M., and P. A. Taylor, 1998: Fronts and the boundary layer-Some numerical studies. Bound.-Layer Meteor., 89, 469–506.Google Scholar
  98. Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems. Academic Press, 603 pp.Google Scholar
  99. Parker, D. J., 1999: Passage of a tracer through frontal zones: A model for the formation of forward-sloping cold fronts. Quart. J. Roy. Meteor. Soc., 125, 1785–1800.Google Scholar
  100. Petterssen, S., 1933: Kinematical and dynamical properties of the field of pressure, with application to weather forecasting. Geophys. Publ., 10(2), 1–92.Google Scholar
  101. -, 1936: Contribution to the theory of frontogenesis. Geophys. Publ., 11 (6), 1–27.Google Scholar
  102. -, 1955: A general survey of factors influencing development at sea level. J. Meteor., 12, 36–42.Google Scholar
  103. -, G. E. Dunn, and L. L. Means, 1955: Report of an experiment in forecasting of cyclone development. J. Meteor., 12, 58–67.Google Scholar
  104. Pliske, R. M., B. Crandall, and G. Klein, 2004: Competence in weather forecasting. Psychological Investigations of Competence in Decision Making, K. Smith et al., Eds., Cambridge University Press, 40–68.Google Scholar
  105. Purser, R. J., and M. J. P. Cullen, 1987: A duality principle in semigeostrophic theory. J. Atmos. Sci., 44, 3449–3468.Google Scholar
  106. Ralph, F. M., P. J. Neiman, and T. L. Keller, 1999: Deep-tropospheric gravity waves created by leeside cold fronts. J. Atmos. Sci., 56, 2986–3009.Google Scholar
  107. Rao, G. V., 1966: On the influences of fields of motion, baroclinicity and latent heat source on frontogenesis. J. Appl. Meteor., 5, 377–387.Google Scholar
  108. Reed, R. J., 2003: A short account of my education, career choice, and research motivation. A Half Century of Progress in Meteorology: A Tribute to Richard Reed, Meteor. Monogr., No. 53, Amer. Meteor. Soc., 1–7.Google Scholar
  109. Reeder, M. J., and K. J. Tory, 2005: The effect of the continental boundary layer on the dynamics of fronts in a 2D model of baroclinic instability. II: Surface heating and cooling. Quart. J. Roy. Meteor. Soc., 131, 2409–2429.Google Scholar
  110. Renard, R. J., and L. C. Clarke, 1965: Experiments in numerical objective frontal analysis. Mon. Wea. Rev., 93, 547–556.Google Scholar
  111. Roebber, P. J., D. M. Schultz, B. A. Colle, and D. J. Stensrud, 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19, 936–949.Google Scholar
  112. Rutledge, S. A., 1989: A severe frontal rainband. Part IV: Precipitation mechanisms, diabatic processes and rainband maintenance. J. Atmos. Sci., 46, 3570–3594.Google Scholar
  113. Sanders, F., 1955: An investigation of the structure and dynamics of an intense surface frontal zone. J. Meteor., 12, 542–552.Google Scholar
  114. -, 1967: Frontal structure and the dynamics of frontogenesis. Final Report to the National Science Foundation, Grant GP-1508, 10 pp. with 10 appendixes.Google Scholar
  115. -, 1983: Observations of fronts. Mesoscale Meteorology-Theories, Observations and Models, D. K. Lilly and T. Gal-Chen, Eds., Reidel, 175–203.Google Scholar
  116. -, 1987: A study of 500 mb vorticity maxima crossing the east coast of North America and associated surface cyclogenesis. Wea. Forecasting, 2, 70–83.Google Scholar
  117. -, 1999a: A proposed method of surface map analysis. Mon. Wea. Rev., 127, 945–955.Google Scholar
  118. -, 1999b: A short-lived cold front in the southwestern United States. Mon. Wea. Rev., 127, 2395–2403.Google Scholar
  119. -, 2005: Real front or baroclinic trough? Wea. Forecasting, 20, 647–651.Google Scholar
  120. -, and E. P. Auciello, 1989: Skill in prediction of explosive cyclogenesis over the western North Atlantic Ocean, 1987/88: A forecast checklist and NMC dynamical models. Wea. Forecasting, 4, 157–172.Google Scholar
  121. -, and C. A. Doswell III, 1995: A case for detailed surface analysis. Bull. Amer. Meteor. Soc., 76, 505–521.Google Scholar
  122. -, and E. Kessler, 1999: Frontal analysis in the light of abrupt temperature changes in a shallow valley. Mon. Wea. Rev., 127, 1125–1133.Google Scholar
  123. -, and E. G. Hoffman, 2002: A climatology of surface baroclinic zones. Wea. Forecasting, 17, 774–782.Google Scholar
  124. Saucier, W. J., 1955: Principles of Meteorological Analysis. University of Chicago Press, 438 pp.Google Scholar
  125. Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Roy. Soc. London, A234, 346–362.Google Scholar
  126. Schultz, D. M., 2004: Cold fronts with and without prefrontal wind shifts in the central United States. Mon. Wea. Rev., 132, 2040–2053.Google Scholar
  127. -, 2005: A review of cold fronts with prefrontal troughs and wind shifts. Mon. Wea. Rev., 133, 2449–2472.Google Scholar
  128. -, and C. F. Mass, 1993: The occlusion process in a midlatitude cyclone over land. Mon. Wea. Rev., 121, 918–940.Google Scholar
  129. -, and W. J. Steenburgh, 1999: The formation of a forward-tilting cold front with multiple cloud bands during Superstorm 1993. Mon. Wea. Rev., 127, 1108–1124.Google Scholar
  130. -, and R. J. Trapp, 2003: Nonclassical cold-frontal structure caused by dry subcloud air in northern Utah during the Intermountain Precipitation Experiment (IPEX). Mon. Wea. Rev., 131, 2222–2246.Google Scholar
  131. -, and P. J. Roebber, 2008: The fiftieth anniversary of Sanders (1955): A mesoscale model simulation of the cold front of 17–18 April 1953. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc.Google Scholar
  132. Schwerdtfeger, W., 1981: Comments on Tor Bergeron’s contributions to synoptic meteorology. Pure Appl. Geophys., 119, 501–509.Google Scholar
  133. Science, 1941: A new type of weather map. Science, 94 (1 Aug. Suppl.), 10.Google Scholar
  134. Seitter, K. L., 1986: A numerical study of atmospheric density current motion including the effects of condensation. J. Atmos. Sci., 43, 3068–3076.Google Scholar
  135. -, and H. S. Muench, 1985: Observation of a cold front with rope cloud. Mon. Wea. Rev., 113, 840–848.Google Scholar
  136. Shapiro, M. A., 1982: Mesoscale weather systems of the central United States. CIRES/NOAA Tech. Rep., University of Colorado, 78 pp. [Available from Cooperative Institute for Research in Environmental Sciences, University of Colorado/NOAA, Boulder, CO 80309.]Google Scholar
  137. -, 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112, 1634–1639.Google Scholar
  138. -, T. Hampel, D. Rotzoll, and F. Mosher, 1985: The frontal hydraulic head: A micro-α scale (∼1 km) triggering mechanism for mesoconvective weather systems. Mon. Wea. Rev., 113, 1166–1183.Google Scholar
  139. -, and Coauthors, 1999: A planetary-scale to mesoscale perspective of the life cycles of extratropical cyclones: The bridge between theory and observations. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 139–185.Google Scholar
  140. Shaughnessy, J. E., and T. C. Wann, 1973: Frontal rope in the North Pacific. Mon. Wea. Rev., 101, 774–776.Google Scholar
  141. Smith, R. K., and M. J. Reeder, 1988: On the movement and lowlevel structure of cold fronts. Mon. Wea. Rev., 116, 1927–1944.Google Scholar
  142. Snyder, C., and D. Keyser, 1996: The coupling of fronts and the boundary layer. Preprints, Seventh Conf. on Mesoscale Processes, Reading, United Kingdom, Amer. Meteor. Soc., 520–522.Google Scholar
  143. -, W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 3194–3211.Google Scholar
  144. Stoelinga, M. T., J. D. Locatelli, and P. V. Hobbs, 2002: Warm occlusions, cold occlusions, and forward-tilting cold fronts. Bull. Amer. Meteor. Soc., 83, 709–721.Google Scholar
  145. Stone, P. H., 1966: Frontogenesis by horizontal wind deformation fields. J. Atmos. Sci., 23, 455–465.Google Scholar
  146. Sutcliffe, R. C., 1952: Principles of synoptic weather forecasting. Quart. J. Roy. Meteor. Soc., 78, 291–320.Google Scholar
  147. Taljaard, J. J., W. Schmitt, and H. van Loon, 1961: Frontal analysis with application to the Southern Hemisphere. Notos, 10, 25–58.Google Scholar
  148. Thompson, W. T., and R. T. Williams, 1997: Numerical simulations of maritime frontogenesis. J. Atmos. Sci., 54, 314–331.Google Scholar
  149. Thorpe, A. J., and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42, 1809–1824.Google Scholar
  150. Tory, K. J., and M. J. Reeder, 2005: The effect of the continental boundary layer on the dynamics of fronts in a 2D model of baroclinic instability. I: An insulated lower surface. Quart. J. Roy. Meteor. Soc., 131, 2389–2408.Google Scholar
  151. Uccellini, L. W., S. F. Corfidi, N. W. Junker, P. J. Kocin, and D. A. Olson, 1992: Report on the surface analysis workshop held at the National Meteorological Center 25–28 March 1991. Bull. Amer. Meteor. Soc., 73, 459–472.Google Scholar
  152. van Delden, A., 1999: The slope of isentropes constituting a frontal zone. Tellus, 51A, 603–611.Google Scholar
  153. Vincent, D. G., and H. Borenstein, 1980: Experiments concerning variability among subjective analyses. Mon. Wea. Rev., 108, 1510–1521.Google Scholar
  154. Volkert, H., 1999: Components of the Norwegian cyclone model: Observations and theoretical ideas in Europe prior to 1920. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 15–28.Google Scholar
  155. Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.Google Scholar
  156. Williams, P., Jr., 1972: Western Region synoptic analysis-Problems and methods. NOAA/NWS Western Region Tech. Memo NWSTM WR-71, 71 pp. [Available from NOAA/NWS Western Region Headquarters, 125 S. State Street, Rm. 1311, Salt Lake City, UT 84138-1102.]Google Scholar
  157. Williams, R. T., 1968: A note on quasi-geostrophic frontogenesis. J. Atmos. Sci., 25, 1157–1159.Google Scholar
  158. -, 1972: Quasi-geostrophic versus non-geostrophic frontogenesis. J. Atmos. Sci., 29, 3–10.Google Scholar
  159. -, and J. Plotkin, 1968: Quasi-geostrophic frontogenesis. J. Atmos. Sci., 25, 201–206.Google Scholar
  160. Woods, V. S., 1983: Rope cloud over land. Mon. Wea. Rev., 111, 602–607.Google Scholar
  161. Xu, Q., and W. Gu, 2002: Semigeostrophic frontal boundary layer. Bound.-Layer Meteor., 104, 99–110.Google Scholar
  162. -,-, and J. Gao, 1998: Baroclinic Eady wave and fronts. Part I: Viscous semigeostrophy and the impact of boundary condition. J. Atmos. Sci., 55, 3598–3615.Google Scholar
  163. Young, G. S., and R. H. Johnson, 1984: Meso-and microscale features of a Colorado cold front. J. Climate Appl. Meteor., 23, 1315–1325.Google Scholar
  164. -, and J. M. Fritsch, 1989: A proposal for general conventions in analyses of mesoscale boundaries. Bull. Amer. Meteor. Soc., 70, 1412–1421.Google Scholar
  165. Yu, C.-K., and N. A. Bond, 2002: Airborne Doppler observations of a cold front in the vicinity of Vancouver Island. Mon. Wea. Rev., 130, 2692–2708.Google Scholar

Copyright information

© American Meteorological Society 2008

Authors and Affiliations

  • David M. Schultz
    • 1
    • 2
  1. 1.Cooperative Institute for Mesoscale Meteorological StudiesUniversity of OklahomaNormanUSA
  2. 2.NOAA/National Severe Storms LaboratoryNormanUSA

Personalised recommendations