Strong Surface Fronts over Sloping Terrain and Coastal Plains

  • Lance F. Bosart
  • Alicia C. Wasula
  • Walter H. Drag
  • Keith W. Meier
Part of the Meteorological Monographs book series (METEOR, volume 33, No. 55)


This paper begins with a review of basic surface frontogenesis concepts with an emphasis on fronts located over sloping terrain adjacent to mountain barriers and fronts located in large-scale baroclinic zones close to coastlines. The impact of cold-air damming and differential diabatic heating and cooling on frontogenesis is considered through two detailed case studies of intense surface fronts. The first case, from 17 to 18 April 2002, featured the westward passage of a cold (side-door) front across coastal eastern New England in which 15°– 20°C temperature decreases were observed in less than one hour. The second case, from 28 February to 4 March 1972, featured a long-lived front that affected most of the United States from the Rockies to the Atlantic coast and was noteworthy for a 50°C temperature contrast between Kansas and southern Manitoba, Canada.

In the April 2002 case most of New England was initially covered by an unusually warm, dry air mass. Dynamical anticyclogenesis over eastern Canada set the stage for a favorable pressure gradient to allow chilly marine air to approach coastal New England from the east. Diabatic cooling over the chilly (5°–8°C) waters of the Gulf of Maine allowed surface pressures to remain relatively high offshore while diabatic heating over the land (31°–33°C temperatures) enabled surface pressures to fall relative to over the ocean. The resulting higher pressures offshore resulted in an onshore cold push. Frontal intensity was likely enhanced prior to leaf out and grass green-up as virtually all of the available insolation went into sensible heating.

The large-scale environment in the February–March 1972 case favored the accumulation of bitterly cold arctic air in Canada. Frontal formation occurred over northern Montana and North Dakota as the arctic air moved slowly southward in conjunction with surface pressure rises east of the Canadian Rockies. The arctic air accelerated southward subsequent to lee cyclogenesis-induced pressure falls ahead of an upstream trough that crossed the Rockies. The southward acceleration of the arctic air was also facilitated by dynamic anticyclogenesis in southern Canada beneath a poleward jet-entrance region. Frontal intensity varied diurnally in response to differential diabatic heating. Three types of cyclogenesis events were observed over the lifetime of the event: 1) low-amplitude frontal waves with no upper-level support, 2) low-amplitude frontal waves that formed in a jet-entrance region, and 3) cyclones that formed ahead of advancing upper-level troughs. All cyclones were either nondeveloping or weak developments despite extreme baroclinicity, likely the result of large atmospheric static stability in the arctic frontal zone and unfavorable alongfront stretching deformation. Significant frontal- mountain interactions were observed over the Rockies and the Appalachians.


Cold Front Diabatic Heating Cold Surge Frontal Passage Frontal Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbogast, P., 2004: Frontal-weave development by interaction between a front and a cyclone: Application to FASTEX IOP 17. Quart. J. Roy. Meteor. Soc., 130, 1675–1696.CrossRefGoogle Scholar
  2. Atallah, E. H., and L. F. Bosart, 2003: Extratropical transition and precipitation distribution of Floyd’ 99. Mon. Wea. Rev., 131, 1063–1081.CrossRefGoogle Scholar
  3. Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137–161.CrossRefGoogle Scholar
  4. Bishop, C. H., and A. J. Thorpe, 1994a: Frontal wave stability during moist deformation frontogenesis. Part I: Linear wave dynamics. J. Atmos. Sci., 51, 852–873.CrossRefGoogle Scholar
  5. -, and-, 1994b: Frontal wave stability during moist deformation frontogenesis. Part II: The suppression of nonlinear wave development. J. Atmos. Sci., 51, 874–888.CrossRefGoogle Scholar
  6. Bjerknes, J., 1919: On the structure of moving cyclones. Geofys. Publ., 1, 1–8Google Scholar
  7. -, and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3, 1–18.Google Scholar
  8. -, and E. Palmén, 1937: Investigations of selected European cyclones by means of serial ascents. Geofys. Publ. Norske Videnskaps-Akad. Oslo, 12, 1–62.Google Scholar
  9. Bluestein, H. B., 1986: Fronts and jet streaks: A theoretical perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 173–215.Google Scholar
  10. Bond, N. A., C. F. Mass, and J. E. Overland, 1996: Coastally trapped wind reversals along the United States West Coast during the warm season. Part I: Climatology and temporal evolution. Mon. Wea. Rev., 124, 430–445.CrossRefGoogle Scholar
  11. Bosart, L. F., 1975: New England coastal frontogenesis. Quart. J. Roy. Meteor. Soc., 101, 957–978.CrossRefGoogle Scholar
  12. -, 1981: The Presidents’ Day snowstorm of February 1979: A sub-synoptic scale event. Mon. Wea. Rev., 109, 1542–1566.CrossRefGoogle Scholar
  13. -, 1984: The Texas coastal rainstorm of 17-21 September 1979: An example of synoptic-mesoscale interaction. Mon. Wea. Rev., 112, 1108–1133.CrossRefGoogle Scholar
  14. -, 2003: Tropopause folding: Upper-level frontogenesis, and beyond. A Half Century of Progress in Meteorology: A Tribute to Richard J. Reed, Meteor. Monogr., No. 31, Amer. Meteor. Soc., 13–47.Google Scholar
  15. -, and F. H. Carr, 1978: A case study of excessive rainfall centered around Wellsville, New York, 20–21 June 1972. Mon. Wea. Rev., 106, 348–362.CrossRefGoogle Scholar
  16. -, and S. C. Lin, 1984: A diagnostic analysis of the Presidents’ Day storm of February 1979. Mon. Wea. Rev., 112, 2148–2177.CrossRefGoogle Scholar
  17. -, and D. B. Dean, 1991: The Agnes Rainstorm of June 1972: Surface feature evolution culminating in inland storm redevelopment. Wea. Forecasting, 6, 515–537.CrossRefGoogle Scholar
  18. -, C. J. Vaudo, and J. H. Helsdon Jr., 1972: Coastal frontogenesis. J. Appl. Meteor., 11, 1236–1258.CrossRefGoogle Scholar
  19. -, V. Pagnotti, and B. Lettau, 1973: Climatological aspects of eastern United States back-door cold frontal passages. Mon. Wea. Rev., 101, 627–635.CrossRefGoogle Scholar
  20. -, C.-C. Lai, and R. A. Weisman, 1992: A case study of heavy rainfall associated with weak cyclogenesis in the northwest Gulf of Mexico. Mon. Wea. Rev., 120, 2469–2500.CrossRefGoogle Scholar
  21. Boyle, J. S., 1986: Comparison of the synoptic conditions in midlatitudes accompanying cold surges over eastern Asia for the months of December 1974 and 1978. Part I: Monthly mean fields and individual events. Mon. Wea. Rev., 114, 903–918.CrossRefGoogle Scholar
  22. Branick, M. L., F. Vitale, C.-C. Lai, and L. F. Bosart, 1988: The synoptic and subsynoptic structure of a long-lived severe convective system. Mon. Wea. Rev., 116, 1335–1370.CrossRefGoogle Scholar
  23. Brennan, M. J., G. M. Lackmann, and S. E. Koch, 2003: An analysis of the impact of a split-front rainband on Appalachian cold-air damming. Wea. Forecasting, 18, 712–731.CrossRefGoogle Scholar
  24. Carbone, R. E., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci., 39, 258–279.CrossRefGoogle Scholar
  25. Carr, J. A., 1951: The east coast back-door cold front of 16–20 May 1951. Mon. Wea. Rev., 79, 100–105.CrossRefGoogle Scholar
  26. Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140–156.CrossRefGoogle Scholar
  27. Chen, T.-C., M.-C. Yen, W.-R. Huang, and W. A. Gallus Jr., 2002: An east Asian cold surge: Case study. Mon. Wea. Rev., 130, 2271–2290.CrossRefGoogle Scholar
  28. Chien, F.-C., C. F. Mass, and Y.-H. Kuo, 1997: Interaction of a warmseason frontal system with the coastal mountains of the western United States. Part I: Prefrontal onshore push, coastal ridging, and along shore southerlies. Mon. Wea. Rev., 125, 1705–1729.CrossRefGoogle Scholar
  29. Colle, B. A., 2003: Numerical simulations of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the northeast United States. Mon. Wea. Rev., 131, 2905–2926.CrossRefGoogle Scholar
  30. -, and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 2577–2610CrossRefGoogle Scholar
  31. Colman, B. R., 1990a: Thunderstorms above frontal surfaces in environments without positive CAPE. Part I: A climatology. Mon. Wea. Rev., 118, 1103–1121.CrossRefGoogle Scholar
  32. -, 1990b: Thunderstorms above frontal surfaces in environments without positive CAPE. Part II: Organization and instability mechanisms. Mon. Wea. Rev., 118, 1123–1144.CrossRefGoogle Scholar
  33. Colquhoun, J. R., D. J. Shepherd, C. E. Coulman, R. K. Smith, and K. McInnes, 1985: The southerly buster of southeastern Australia: An orographically forced cold front. Mon. Wea. Rev., 113, 2090–2107.CrossRefGoogle Scholar
  34. Czikowsky, M. J., and D. R. Fitzjarrald, 2004: Evidence of seasonal changes in evapotranspiration in eastern U.S. hydrological records. J. Hydrometeor., 5, 974–988.CrossRefGoogle Scholar
  35. Davies, H. C., 1999: Theories of frontogenesis. The Life Cycles of Extratropical Cycles: Bergen Symposium Book, C. W. Newton and S. Grønås, Eds., Amer. Meteor. Soc., 215–238.Google Scholar
  36. DiMego, G. J., and L. F. Bosart, 1982a: The transformation of Tropical Storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations. Mon. Wea. Rev., 110, 385–411.CrossRefGoogle Scholar
  37. -, and-, 1982b: The transformation of Tropical Storm Agnes into an extratropical cyclone. Part II: Moisture, vorticity and kinetic energy budgets. Mon. Wea. Rev., 110, 412–433.CrossRefGoogle Scholar
  38. Doyle, J. D., 1997: The influence of mesoscale orography on a coastal jet and rainband. Mon. Wea. Rev., 125, 1465–1488.CrossRefGoogle Scholar
  39. -, and T. T. Warner, 1990: Mesoscale coastal processes during GALE OP 2. Mon. Wea. Rev., 118, 283–308.CrossRefGoogle Scholar
  40. -, and-, 1993a: The impact of the sea surface temperature resolution on mesoscale coastal processes during GLE IOP 2. Mon. Wea. Rev., 121, 313–334.CrossRefGoogle Scholar
  41. -, and-, 1993b: A three-dimensional numerical investigation of a Carolina coastal low-level jet during GALE IOP 2. Mon. Wea. Rev., 121, 1030–1047CrossRefGoogle Scholar
  42. -, and-, 1993c: A numerical investigation of coastal frontogenesis and mesoscale cyclogenesis during GALE IOP 2. Mon. Wea. Rev., 121, 1048–1077.CrossRefGoogle Scholar
  43. -, and-, 1993d: Nonhydrostatic simulations of coastal mesobeta-scale vortices and frontogenesis. Mon. Wea. Rev., 121, 3371–3392.CrossRefGoogle Scholar
  44. Dunn, L. B., 1987: Cold air damming by the front range of the Colorado Rockies and its relationship to locally heavy snows. Wea. Forecasting, 2, 177–189.CrossRefGoogle Scholar
  45. -, 1988: Vertical motion evaluation of a Colorado snowstorm from a synoptician’s perspective. Wea. Forecasting, 3, 261–272.CrossRefGoogle Scholar
  46. -, 1992: Evidence of ascent in a sloped barrier jet and an associated heavy-snow band. Mon. Wea. Rev., 120, 914–924.CrossRefGoogle Scholar
  47. Eddy, A., 1967: Statistical objective analysis of scalar data fields. J. Appl. Meteor., 6, 597–609.CrossRefGoogle Scholar
  48. Eliassen, A., 1959: On the formation of fronts in the atmosphere. The Atmosphere and the Sea in Motion, B. Bolin, Ed., Rockefeller Institute Press, 277–287.Google Scholar
  49. -, 1990: Transverse circulations in frontal zones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 155–164.Google Scholar
  50. Fitzjarrald, D. R., O. C. Acevedo, and K. E. Moore, 2001: Climatic consequences of leaf presence in the eastern United States. J. Climate, 14, 598–614CrossRefGoogle Scholar
  51. Forbes, G. S., R. A. Anthes, and D. W. Thomson, 1987: Synoptic and mesoscale aspects of an Appalachian ice storm associated with cold air damming. Mon. Wea. Rev., 115, 564–591.CrossRefGoogle Scholar
  52. Freedman, J. M., D. R. Fitzjarrald, K. E. Moore, and R. K. Sakai, 2001: Boundary layer clouds and vegetation-atmosphere feedbacks. J. Climate, 14, 180–197.CrossRefGoogle Scholar
  53. Fritsch, J. M., J. Kapolka, and P. A. Hirschberg, 1992: The effects of subcloud-layer diabatic processes on cold air damming. J. Atmos. Sci., 49, 49–70.CrossRefGoogle Scholar
  54. Gandin, L. S., 1963: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translation, 242 pp.Google Scholar
  55. Garratt, J. R., 1988: Summertime cold fronts in southeast Australia-Behavior and low-level structure of main frontal types. Mon. Wea. Rev., 116, 636–649.CrossRefGoogle Scholar
  56. -, W. L. Physick, R. K. Smith, and A. J. Troup, 1985: The Australian summertime cool change. Part II: Mesoscale aspects. Mon. Wea. Rev., 113, 202–223.CrossRefGoogle Scholar
  57. -, P. A. C. Howells, and E. Kowalczyk, 1989: The behavior of dry cold fronts traveling along a coastline. Mon. Wea. Rev., 117, 1208–1220.CrossRefGoogle Scholar
  58. Garreaud, R. D., 1999: Cold air incursions over subtropical and tropical South America: A numerical case study. Mon. Wea. Rev., 127, 2823–2853.CrossRefGoogle Scholar
  59. -, 2000: Cold air incursions over subtropical South America: Mean structure and dynamics. Mon. Wea. Rev., 128, 2544–2559.CrossRefGoogle Scholar
  60. -, and J. M. Wallace, 1998: Summertime incursions of midlatitude air into subtropical and tropical South America. Mon. Wea. Rev., 126, 2713–2733.CrossRefGoogle Scholar
  61. Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440.CrossRefGoogle Scholar
  62. Hakim, G. J., 1992: The eastern United States side-door cold front of 22 April 1987: A case study of an intense atmospheric density current. Mon. Wea. Rev., 120, 2738–2762.CrossRefGoogle Scholar
  63. Hartjenstein, G., and R. Bleck, 1991: Factors affecting cold-air outbreaks east of the Rocky Mountains. Mon. Wea. Rev., 119, 2280–2292.CrossRefGoogle Scholar
  64. Hobbs, P. V., and P. O. G. Persson, 1982: The mesoscale and microscale structure and organization of clods and precipitation in midlatitude cyclones. Part V: The substructure of narrow coldfrontal rainbands. J. Atmos. Sci., 39, 280–295.CrossRefGoogle Scholar
  65. Hoinka, K. P., and H. Volkert, 1987: The German front experiment 1987. Bull. Amer. Meteor. Soc., 68, 1424–1427.CrossRefGoogle Scholar
  66. -, and D. Heimann, 1988: Orographic channeling of a cold front by the Pyrenees. Mon. Wea. Rev., 116, 1817–1823.CrossRefGoogle Scholar
  67. Hutchinson, T. A., and H. B. Bluestein, 1998: Prefrontal wind-shift lines in the plains of the United States. Mon. Wea. Rev., 126, 141–166.CrossRefGoogle Scholar
  68. Joly, A., and J. A. Thorpe, 1990: The stability of a steady horizontal shear front with uniform potential vorticity. J. Atmos. Sci., 47, 2612–2623.CrossRefGoogle Scholar
  69. -, and-, 1991: The stability of time-dependent flows: An application to fronts in developing baroclinic waves. J. Atmos. Sci., 48, 163–182.CrossRefGoogle Scholar
  70. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471CrossRefGoogle Scholar
  71. Keshishian, L. G., L. F. Bosart, and W. E. Bracken, 1994: Inverted troughs and cyclogenesis over interior North America: A limited regional climatology and case studies. Mon. Wea. Rev., 122, 565–607.CrossRefGoogle Scholar
  72. Keyser, D., 1986: Atmospheric fronts: An observational perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 216–258.Google Scholar
  73. -, 1999: On the representation and diagnosis of frontal circulations in two and three dimensions. The Life Cycles of Extratropical Cyclones: Bergen Symposium Book, C. W. Newton and S. Grønås, Eds., Amer. Meteor. Soc., 239–264.Google Scholar
  74. -, B. D. Schmidt, and D. G. Duffy, 1989: A technique for representing three-dimensional vertical circulations in baroclinic disturbances. Mon. Wea. Rev., 117, 2463–2494.CrossRefGoogle Scholar
  75. Kistler, R., and Coauthors, 2001: The NCEP-NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–268.CrossRefGoogle Scholar
  76. Koch, S. E., 1984: The role of an apparent mesoscale frontogenetic circulation in squall line initiation. Mon. Wea. Rev., 112, 2090–2111.CrossRefGoogle Scholar
  77. -, and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 2862–2890.CrossRefGoogle Scholar
  78. -, M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 1487–1503.CrossRefGoogle Scholar
  79. -, J. T. McQueen, and V. M. Karyampudi, 1995: A numerical study of the effects of differential cloud cover on cold frontal structure and dynamics. J. Atmos. Sci., 52, 937–964.CrossRefGoogle Scholar
  80. Langmaid, A. H., and A. J. Riordan, 1998: Surface mesoscale processes during the 1994 Palm Sunday tornado outbreak. Mon. Wea. Rev., 126, 2117–2132.CrossRefGoogle Scholar
  81. Lapenta, W. M., and N. L. Seaman, 1990: A numerical investigation of East Coast cyclogenesis during the cold-air damming event of 27–28 February 1982. Part I: Dynamic and thermodynamic structure. Mon. Wea. Rev., 118, 2668–2695.CrossRefGoogle Scholar
  82. Loughe, A. F., 1992: Real-data diagnosis of partitioned ageostrophic vertical circulations. M.S. thesis, Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, 133 pp.Google Scholar
  83. Lupo, A. R., J. J. Nocera, L. F. Bosart, E. G. Hoffman, and D. J. Knight, 2001: South American cold surges: Types, composites, and case studies. Mon. Wea. Rev., 129, 1021–1041.CrossRefGoogle Scholar
  84. Mallet, I., P. Arbogast, C. Baehr, J.-P. Cammas, and P. Mascart, 1999a: Effects of cloud diabatic heating on the early development of the FASTEX IOP17 cyclone. Quart. J. Roy. Meteor. Soc., 125, 3439–3467CrossRefGoogle Scholar
  85. -, J.-P. Cammas, and P. Mascart, 1999b: Dynamical characterization of the FASTEX cyclogenesis cases. Quart. J. Roy. Meteor. Soc., 125, 3469–3494.CrossRefGoogle Scholar
  86. Marengo, J., A. Cornejo, P. Satyamurty, C. Nobre, and W. Sea, 1997: Cold surges in tropical and extratropical South America: The strong event in June 1994. Mon. Wea. Rev., 125, 2759–2786.CrossRefGoogle Scholar
  87. Margules, M., 1906: Über temperaturschichtung in stationär bewegter und ruhender luft. Hann-Band. Meteor. Z., 2, 245–254.Google Scholar
  88. Mass, C. F., and M. D. Albright, 1987: Coastal southerlies and alongshore surges of the West Coast of North America: Evidence of mesoscale topographically trapped response to synoptic forcing. Mon. Wea. Rev., 115, 1707–1738.CrossRefGoogle Scholar
  89. -, and N. A. Bond, 1996: Coastally trapped wind reversals along the United States West Coast during the warm season. Part II: Synoptic evolution. Mon. Wea. Rev., 124, 446–461.CrossRefGoogle Scholar
  90. -, H. J. Edmon, H. J. Friedman, N. R. Cheney, and E. E. Recker, 1987: The use of compact discs for the storage of large meteorological and oceanographic data sets. Bull. Amer. Meteor. Soc., 68, 1556–1558.Google Scholar
  91. Matthews, D. A., 1981: Observation of a cloud arc triggered by thunderstorm outflow. Mon. Wea. Rev., 109, 2140–2157.CrossRefGoogle Scholar
  92. McBride, J. L., and K. L. McInnes, 1993: Australian southerly busters. Part II: The dynamical structure of the orographically modified front. Mon. Wea. Rev., 121, 1921–1935.CrossRefGoogle Scholar
  93. McInnes, K. L., and J. L. McBride, 1993: Australian southerly busters. Part I. Analysis of a numerically simulated case study. Mon. Wea. Rev., 121, 1904–1920.CrossRefGoogle Scholar
  94. Meier, K. W., 1993: Analysis of a long-lived intense low-level front: A case study of 28 February through 3 March 1972. M.S. thesis, Dept. of Earth and Atmospheric Sciences, University at Albany, State University of New York, 274 pp.Google Scholar
  95. Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169–171.CrossRefGoogle Scholar
  96. Moreira, M., L. Sternburg, L. Martinelli, R. Victoria, E. Barbosa, L. Bonates, and D. Nepstad, 1997: Contribution of transpiration to forest ambient vapour based on isotopic measurements. Global Change Biol., 3, 439–450.CrossRefGoogle Scholar
  97. Newton, C. W., 1954: Frontogenesis and frontolysis as a three-dimensional process. J. Meteor., 11, 449–461.CrossRefGoogle Scholar
  98. Nielsen, J. W., 1989: The formation of New England coastal fronts. Mon. Wea. Rev., 117, 1380–1401.CrossRefGoogle Scholar
  99. -, and P. P. Neilley, 1990: The vertical structure of New England coastal fronts. Mon. Wea. Rev., 118, 1793–1807CrossRefGoogle Scholar
  100. O’Handley, C., and L. F. Bosart, 1996: The impact of the Appalachian Mountains on cyclonic weather systems. Part I: A climatology. Mon. Wea. Rev., 124, 1353–1373CrossRefGoogle Scholar
  101. Palmén, E., 1949: On the origin and structure of high-level cyclones south of the maximum westerlies. Tellus, 1, 22–31CrossRefGoogle Scholar
  102. Patoux, J., G. J. Hakim, and R. A. Brown, 2005: Diagnosis of frontal instabilities over the Southern Ocean. Mon. Wea. Rev., 133, 863–875.CrossRefGoogle Scholar
  103. Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11, 1–27.Google Scholar
  104. -, 1956: Weather Analysis and Forecasting. Vol. 1, McGraw-Hill, 428 pp.Google Scholar
  105. Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 226–237.CrossRefGoogle Scholar
  106. -, and F. Sanders, 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338–349.CrossRefGoogle Scholar
  107. Renfrew, I. A., A. J. Thorpe, and C. H. Bishop, 1997: The role of environmental flow in the development of secondary frontal cyclones. Quart. J. Roy. Meteor. Soc., 123, 1653–1675.CrossRefGoogle Scholar
  108. Roebber, P. J., and L. F. Bosart, 1998: The sensitivity of precipitation to circulation details. Part I: An analysis of regional analogues. Mon. Wea. Rev., 126, 437–455.CrossRefGoogle Scholar
  109. Sanders, F., 1955: An investigation of the structure and dynamics of an intense surface frontal zone. J. Meteor., 12, 542–552CrossRefGoogle Scholar
  110. -, 1963: On subjective probability forecasting. J. Appl. Meteor., 2, 191–201.CrossRefGoogle Scholar
  111. -, 1972: Meteorological and oceanographic conditions during the 1970 Bermuda Yacht Race. Mon. Wea. Rev., 100, 597–606CrossRefGoogle Scholar
  112. -, 1979: Trends in skill of daily forecasts of temperature and precipitation, 1966–78. Bull. Amer. Meteor. Soc., 60, 763–769.CrossRefGoogle Scholar
  113. -, 1999: A proposed method of surface map analysis. Mon. Wea. Rev., 127, 945–955.CrossRefGoogle Scholar
  114. -, 2000: Frontal focusing of a flooding rainstorm. Mon. Wea. Rev., 128, 4155–4159.CrossRefGoogle Scholar
  115. -, and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 1589–1606.CrossRefGoogle Scholar
  116. -, and L. F. Bosart, 1985a: Mesoscale structure in the megalopolitan snowstorm of 11–12 February 1983. Part I: Frontogenetical forcing and symmetric instability. J. Atmos. Sci., 42, 1050–1061.CrossRefGoogle Scholar
  117. -, and-, 1985b: Mesoscale structure in the megalopolitan snowstorm, 11-12 February 1983. Part II: Doppler radar study of the New England snowband. J. Atmos. Sci., 42, 1398–1407.CrossRefGoogle Scholar
  118. -, and C. A. Doswell III, 1995: A case for detailed surface analysis. Bull. Amer. Meteor. Soc., 76, 505–521.CrossRefGoogle Scholar
  119. -, and E. Kessler, 1999: Frontal analysis in the light of abrupt temperature changes in a shallow valley. Mon. Wea. Rev., 127, 1125–1133.CrossRefGoogle Scholar
  120. -, and E. G. Hoffman, 2002: A climatology of surface baroclinic zones. Wea. Forecasting, 17, 774–782.CrossRefGoogle Scholar
  121. Schär, C., and H. C. Davies, 1990: An instability of mature cold fronts. J. Atmos. Sci., 47, 929–950.CrossRefGoogle Scholar
  122. Schoenberger, L. M., 1984: Doppler radar observation of a land breeze cold front. Mon. Wea. Rev., 112, 2455–2464.CrossRefGoogle Scholar
  123. Schultz, D. M., 2004: Cold fronts with and without prefrontal wind shifts in the central United States. Mon. Wea. Rev., 132, 2040–2053.CrossRefGoogle Scholar
  124. -, 2008: A review of cold fronts, including prefrontal troughs and wind shifts. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc.Google Scholar
  125. -, and W. J. Steenburgh, 1999: The formation of a forward-tilting cold front with multiple cloud bands during Superstorm 1993. Mon. Wea. Rev., 127, 1108–1124.CrossRefGoogle Scholar
  126. -, and P. J. Roebber, 2008: The fiftieth anniversary of Sanders (1955): A mesoscale model simulation of the cold front of 17–18 April 1953. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc.Google Scholar
  127. -, W. E. Bracken, L. F. Bosart, G. J. Hakim, M. A. Bedrick, M. J. Dickinson, and K. R. Tyle, 1997: The 1993 Superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125, 5–39.CrossRefGoogle Scholar
  128. Schumacher, P. N., D. J. Knight, and L. F. Bosart, 1996: Frontal interaction with the Appalachian Mountains. Part I: A climatology. Mon. Wea. Rev., 124, 2453–2468.CrossRefGoogle Scholar
  129. Schwierz, C., S. Dirren, and H. C. Davies, 2004: Forced waves on a zonally aligned jet stream. J. Atmos. Sci., 61, 73–87CrossRefGoogle Scholar
  130. Seitter, K. L., 1986: A numerical study of atmospheric density current motion including the effects of condensation. J. Atmos. Sci., 43, 3068–3076.CrossRefGoogle Scholar
  131. Seluchi, M. E., R. D. Garreaud, F. A. Norte, and A. C. Saulo, 2006: Influence of the subtropical Andes on baroclinic disturbances: A cold front case study. Mon. Wea. Rev., 134, 3317–3335.CrossRefGoogle Scholar
  132. Shapiro, M. A., 1982: Mesoscale weather systems of the central United States. NOAA-CIRES Tech. Rep., University of Colorado, 78 pp.Google Scholar
  133. -, 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112, 1634–1639.CrossRefGoogle Scholar
  134. -, and D. Keyser, 1990: Fronts, jet streams and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.Google Scholar
  135. -, T. Hampel, D. Rotzoll, and F. Mosher, 1985: The frontal hydraulic head: A micro-scale (∼1 km) triggering mechanism for mesoconvective weather systems. Mon. Wea. Rev., 113, 1166–1183.CrossRefGoogle Scholar
  136. Simpson, J. E., 1987: Gravity Currents: In the Environment and the Laboratory. Halstead Press, 244 pp.Google Scholar
  137. -, D. A. Mansfield, and J. R. Milford, 1977: Inland penetration of sea-breeze fronts. Quart. J. Roy. Meteor. Soc., 103, 47–76CrossRefGoogle Scholar
  138. Smith, R. B., and M. J. Reeder, 1988: On the movement and lowlevel structure of cold fronts. Mon. Wea. Rev., 116, 1927–1944.CrossRefGoogle Scholar
  139. Smith, R. K., B. F. Ryan, A. J. Troup, and K. J. Wilson, 1982: Cold fronts research: The Australian summertime “cool change.” Bull. Amer. Meteor. Soc., 63, 1028–1034.CrossRefGoogle Scholar
  140. Smith, S. A., D. C. Fritts, and T. E. Vanzandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44, 1404–1410CrossRefGoogle Scholar
  141. Stauffer, D. R., and T. T. Warner, 1987: A numerical study of Appalachian cold-air damming and coastal frontogenesis. Mon. Wea. Rev., 115, 799–821.CrossRefGoogle Scholar
  142. Steenburgh, W. J., and T. R. Blazek, 2001: Topographic distortion of a cold front over the Snake River Plain and central Idaho mountains. Wea. Forecasting, 16, 301–314.CrossRefGoogle Scholar
  143. -, D. M. Schultz, and B. A. Colle, 1998: The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico. Mon. Wea. Rev., 126, 2673–2691CrossRefGoogle Scholar
  144. Steiner, J. T., C. G. Revell, R. N. Ridley, R. K. Smith, M. A. Page, K. L. McInnes, and A. P. Sturman, 1987: The New Zealand southerly change experiment. Bull. Amer. Meteor. Soc., 68, 1226–1229.CrossRefGoogle Scholar
  145. Thorncroft, C. D., and B. J. Hoskins, 1990: Frontal cyclogenesis. J. Atmos. Sci., 47, 2317–2336.CrossRefGoogle Scholar
  146. Uccellini, L. W., P. J. Kocin, R. A. Petersen, C. H. Wash, and K. F. Brill, 1984: The Presidents’ Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet streak influencing the precyclogenetic period. Mon. Wea. Rev., 112, 31–55.CrossRefGoogle Scholar
  147. -, D. Keyser, K. F. Brill, and D. H. Wash, 1985: The Presidents’ Day cyclone of February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962–988.CrossRefGoogle Scholar
  148. Vera, C. S., and P. K. Vigliarolo, 2000: A diagnostic study of coldair outbreaks over South America. Mon. Wea. Rev., 128, 3–24.CrossRefGoogle Scholar
  149. Volkert, H., 1999: Components of the Norwegian cyclone model: Observations and theoretical ideas in Europe prior to 1920. The Life Cycles of Extratropical Cycles: Bergen Symposium Book, C. W. Newton and S. Grønås, Eds., Amer. Meteor. Soc., 15–28.Google Scholar
  150. -, L. Weickmann, and A. Tafferner, 1991: The papal front of 3 May 1987: A remarkable example of frontogenesis near the Alps. Quart. J. Roy. Meteor. Soc., 117, 125–150.CrossRefGoogle Scholar
  151. Wakimoto, R. M., 1982: Investigations of thunderstorm gust fronts with the use of radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082.CrossRefGoogle Scholar
  152. Weisman, R. A., K. G. McGregor, D. R. Novak, J. L. Selzler, M. L. Spinar, B. C. Thomas, and P. N. Schumacher, 2002: Precipitation regimes during cold-season central U.S. inverted trough cases. Part I: Synoptic climatology and composite study. Wea. Forecasting, 17, 1173–1193.CrossRefGoogle Scholar
  153. Whitaker, J. S., L. W. Uccellini, and K. F. Brill, 1988: A model-based diagnostic study of the rapid development phase of the Presidents’ Day cyclone. Mon. Wea. Rev., 116, 2337–2365.CrossRefGoogle Scholar
  154. Zhang, F., and S. E. Koch, 2000: Numerical simulations of a gravity wave event over CCOPE. Part II: Waves generated by an orographic density current. Mon. Wea. Rev., 128, 2777–2796.CrossRefGoogle Scholar

Copyright information

© American Meteorological Society 2008

Authors and Affiliations

  • Lance F. Bosart
    • 1
  • Alicia C. Wasula
    • 1
  • Walter H. Drag
    • 2
  • Keith W. Meier
    • 3
  1. 1.Department of Earth and Atmospheric SciencesUniversity at Albany, State University of New YorkAlbanyUSA
  2. 2.National Weather ServiceTauntonUSA
  3. 3.National Weather ServiceBillingsUSA

Personalised recommendations