Finescale Radar Observations of a Dryline during the International H2O Project (IHOP_2002)

  • Christopher C. Weiss
  • Howard B. Bluestein
  • Andrew L. Pazmany
  • Bart Geerts
Part of the Meteorological Monographs book series (METEOR, volume 33, No. 55)


A case study of a double dryline on 22 May 2002 is presented. Mobile, 3-mm-wavelength Doppler radars from the University of Massachusetts and the University of Wyoming (Wyoming cloud radar) were used to collect very fine resolution vertical-velocity data in the vicinity of each of the moisture gradients associated with the drylines. Very narrow (50–100 m wide) channels of strong upward vertical velocity (up to 8 m s−1) were measured in the convergence zone of the easternmost dryline, larger in magnitude than reported with previous drylines. Distinct areas of descending motion were evident to the east and west of both drylines. Radar data are interpreted in the context of other observational platforms available during the International H2O Project (IHOP_2002). A variational ground-based mobile radar data processing technique was developed and applied to pseudo-dual-Doppler data collected during a rolling range-height indicator deployment. It was found that there was a secondary (vertical) circulation normal to the easternmost moisture gradient; the circulation comprised an easterly component near-surface flow to the east, a strong upward vertical component in the convergence zone, a westerly return flow above the convective boundary layer, and numerous regions of descending motion, the most prominent approximately 3–5 km to the east of the surface convergence zone.


Radial Velocity Doppler Radar Boundary Layer Depth Severe Thunderstorm Convection Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525–550.CrossRefGoogle Scholar
  2. Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching Radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 1263–1274.CrossRefGoogle Scholar
  3. Bluestein, H. B., 2008: Surface boundaries of the Southern Plains: Their role in the initiation of convective storms. Synoptic—Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc.Google Scholar
  4. -, and A. L. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc., 81, 2939–2952.CrossRefGoogle Scholar
  5. Cohn, S. A., W. O. J. Brown, C. L. Martin, M. E. Susedik, G. Maclean, and D. B. Parsons, 2001: Clear air boundary layer space antenna wind measurement with the Multiple Antenna Profiler (MAPR). Ann. Geophys., 19, 845–854.CrossRefGoogle Scholar
  6. Crawford, T. M., and H. B. Bluestein, 1997: Characteristics of dryline passage. Mon. Wea. Rev., 125, 463–477.CrossRefGoogle Scholar
  7. Demoz, B., and Coauthors, 2006: The dryline on 22 May 2002 during IHOP_2002: Convective-scale measurements at the profiling site. Mon. Wea. Rev., 134, 294–310.CrossRefGoogle Scholar
  8. Dowell, D. C., and H. B. Bluestein, 2002: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 2626–2648.CrossRefGoogle Scholar
  9. Feltz, W. F., H. B. Howell, R. O. Knuteson, H. M. Woolf, and H. E. Revercomb, 2003: Near continuous profiling of temperature, moisture, and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42, 584–597.CrossRefGoogle Scholar
  10. Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128–2142.CrossRefGoogle Scholar
  11. Geerts, B., and Q. Miao, 2005: The use of millimeter Doppler radar echoes to estimate vertical air velocities in the fair-weather convective boundary layer. J. Atmos. Oceanic Technol., 22, 225–246.CrossRefGoogle Scholar
  12. Hane, C. E., C. L. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc., 74, 2133–2145.CrossRefGoogle Scholar
  13. -, H. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev., 125, 231–251.CrossRefGoogle Scholar
  14. -, M. E. Baldwin, H. B. Bluestein, T. M. Crawford, and R. M. Rabin, 2001: A case study of severe storm development along a dryline within a synoptically active environment. Part I: Dryline motion and an Eta model forecast. Mon. Wea. Rev., 129, 2183–2204.CrossRefGoogle Scholar
  15. Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213–232.CrossRefGoogle Scholar
  16. Jorgensen, D. P., T. J. Matejka, and J. D. DuGranrut, 1995: Multibeam techniques for deriving wind fields from airborne Doppler radars. J. Meteor. Atmos. Phys., 58, 83–104.Google Scholar
  17. LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 1077–1091.CrossRefGoogle Scholar
  18. -, F. Chen, J. G. Alfieri, M. Tewan, B. Geerts, Q. Miao, R. L. Grossman, and R. L. Coulter, 2007: Influence of land cover and soil moisture on the horizontal distribution of sensible and latent heat fluxes in southeast Kansas during IHOP_2002 and CASES-97. J. Hydrometeor., 8, 68–87.CrossRefGoogle Scholar
  19. Miller, D. A., and F. Sanders, 1980: Mesoscale conditions for the severe convection of 3 April 1974 in the east-central United States. J. Atmos. Sci., 37, 1041–1055.CrossRefGoogle Scholar
  20. Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev., 119, 1283–1292.CrossRefGoogle Scholar
  21. Russell, R. W., and J. W. Wilson, 1997: Radar-observed “fine lines” in the optically clear boundary layer: Reflectivity contributions from aerial plankton and its predators. Bound.-Layer Meteor., 82, 235–262.CrossRefGoogle Scholar
  22. Sanders, F. S., 1986: Temperatures of air parcels lifted from the surface: Background, application and nomograms. Wea. Forecasting, 1, 190–205.CrossRefGoogle Scholar
  23. ,-and A. J. Garrett, 1975: Application of a convective plume model to prediction of thunderstorms. Mon. Wea. Rev., 103, 874–877.CrossRefGoogle Scholar
  24. ,-and D. O. Blanchard, 1993: The origin of a severe thunderstorm in Kansas on 10 May 1985. Mon. Wea. Rev., 121, 133–149.CrossRefGoogle Scholar
  25. -, and C. A. Doswell, 1995: A case for detailed surface analysis. Bull. Amer. Meteor. Soc., 76, 505–522.CrossRefGoogle Scholar
  26. Sasaki, Y., 1970: Some basic formalisms in numerical variational analysis. Mon. Wea. Rev., 98, 875–883.CrossRefGoogle Scholar
  27. Simpson, J. E., 1969: A comparison between laboratory and atmospheric density currents. Quart. J. Roy. Meteor. Soc., 95, 758–765.CrossRefGoogle Scholar
  28. Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253–277.CrossRefGoogle Scholar
  29. Weiss, C. C., and H. B. Bluestein, 2002: Airborne pseudo-dual Doppler analysis of a dryline-outflow boundary intersection. Mon. Wea. Rev., 130, 1207–1226.CrossRefGoogle Scholar
  30. -,-, and A. L. Pazmany, 2006: Finescale radar observations of the 22 May 2002 dryline during the International H2O Project (IHOP). Mon. Wea. Rev., 134, 273–293.CrossRefGoogle Scholar
  31. Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms by radar-observed boundary layer convergence lines. Mon. Wea. Rev., 114, 2516–2536.CrossRefGoogle Scholar
  32. Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci., 52, 263–285.CrossRefGoogle Scholar

Copyright information

© American Meteorological Society 2008

Authors and Affiliations

  • Christopher C. Weiss
    • 1
  • Howard B. Bluestein
    • 2
  • Andrew L. Pazmany
    • 3
  • Bart Geerts
    • 4
  1. 1.Department of GeoscienceTexas Tech UniversityLubbockUSA
  2. 2.School of MeteorologyUniversity of OklahomaNormanUSA
  3. 3.ProSensing, Inc.AmherstUSA
  4. 4.College of EngineeringUniversity of WyomingLaramieUSA

Personalised recommendations