On Human Action

  • Aaron Bobick
  • Volker Krüger


In this chapter we briefly discuss how human actions can be modeled. In particular, we very briefly review different approaches taken in computer vision and robotics. We touch briefly on concepts such as affordances, scene states, object-action complexes, action primitives, imitation learning, etc., and we relate the different approaches taken in Computer Vision and in Robotics. This chapter is meant to provide the bigger frame within which the following chapters of this part of the book are embedded.


Action Recognition Abstraction Level Robot Interaction Movement Primitive Action Primitive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arbib, M.A.: Perceptual structures and distributed motor control. In: Brooks, V.B. (ed.) Handbook of Physiology, Section 2: The Nervous System (Vol. II, Motor Control, Part 1), pp. 1449–1480. Am. Physiol. Soc., Bethesda (1981) Google Scholar
  2. 2.
    Beetz, M., Jain, D., Mösenlechner, L., Tenorth, M.: Towards performing everyday manipulation activities. Robot. Auton. Syst. 58(9), 1085–1095 (2010) CrossRefGoogle Scholar
  3. 3.
    Billard, A.: Imitation: A review. In: Arbib, M. (ed.) Handbook of Brain Theory and Neural Network, pp. 566–569. MIT Press, Cambridge (2002) Google Scholar
  4. 4.
    Bobick, A., Davis, J.: The representation and recognition of action using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001) CrossRefGoogle Scholar
  5. 5.
    Bobick, A.F.: Movements, activity, and action: The role of knowledge in the perception of motion. In: Royal Society Workshop on Knowledge-based Vision in Man and Machine, London, England, p. 70 (February 1997) Google Scholar
  6. 6.
    Breazeal, C., Scassellati, B.: Robots that imitate humans. Trends Cogn. Sci. 6(11), 481–487 (2002) CrossRefGoogle Scholar
  7. 7.
    Calinon, S., Guenter, F., Billard, A.: Goal-directed imitation in a humanoid robot. In: International Conference on Robotics and Automation, Barcelona, Spain, pp. 299–304 (April 18–22, 2005) Google Scholar
  8. 8.
    Cedras, C., Shah, M.: Motion-based recognition: A survey. Image Vis. Comput. 13(2), 129–155 (1995) CrossRefGoogle Scholar
  9. 9.
    De la Torre, F., Hodgins, J., Montano, J., Valcarcel, S., Forcada, R., Macey, J.: Guide to the Carnegie Mellon university multimodal activity (cmu-mmac) database. Technical Report CMU-RI-TR-08-22, Robotics Institute, Carnegie Mellon University (July 2009) Google Scholar
  10. 10.
    Demiris, Y., Johnson, M.: Distributed, predictive perception of actions: a biologically inspired robotics architecture for imitation and learning. Connect. Sci. J. 15(4), 231–243 (2003) CrossRefGoogle Scholar
  11. 11.
    Dillmann, R.: Teaching and learning of robot tasks via observation of human performance. Robot. Auton. Syst. 47, 109–116 (2004) CrossRefGoogle Scholar
  12. 12.
    Dollar, P., Rabaud, V., Cottrellm, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS) (2005) Google Scholar
  13. 13.
    Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978) Google Scholar
  14. 14.
    Ekvall, S., Kragic, D.: Grasp recognition for programming by demonstration tasks. In: IEEE International Conference on Robotics and Automation, ICRA’05, Barcelona, Spain, April 18–22, pp. 748–753 (2005) Google Scholar
  15. 15.
    Gibson, J.J.: The Theory of Affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, Acting, and Knowing. Lawrence Erlbaum, Mahwah (1977) Google Scholar
  16. 16.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Psychology Press, London (1997) Google Scholar
  17. 17.
    Giese, M., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nat. Rev., Neurosci. 4, 179–192 (2003) CrossRefGoogle Scholar
  18. 18.
    Gilbert, A., Illingworth, J., Bowden, R.: Action recognition using mined hierarchical compound features. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 883–897 (2011) CrossRefGoogle Scholar
  19. 19.
    Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space–time shapes. In: IEEE International Conference on Computer Vision (ICCV) (2005) Google Scholar
  20. 20.
    Gupta, A., Kembhavi, A., Davis, L.S.: Observing human–object interactions: Using spatial and functional compatibility for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1775–1789 (2009) CrossRefGoogle Scholar
  21. 21.
    Hamid, R., Maddi, S., Johnson, A., Bobick, A., Essa, I., Isbell, C.L.: A novel sequence representation for unsupervised analysis of human activities. Artif. Intell. 173(14), 1221–1244 (2009) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Huang, Y.W.T.: Vision-based gesture recognition: A review. In: Proceedings of the International Gesture Workshop on Gesture-Based Communication in Human–Computer Interaction. GW ’99, pp. 103–115. Springer, London (1999) Google Scholar
  23. 23.
    Jain, A., Kemp, C.: El-e: An assistive mobile manipulator that autonomously fetches objects from flat surfaces. Auton. Robots 28, 45–64 (2010) CrossRefGoogle Scholar
  24. 24.
    Jenkins, O.C., Mataric, M.J.: Performance-derived behavior vocabularies: Data-driven acquisition of skills from motion. Int. J. Humanoid Robot. 1(2), 237–288 (2004) CrossRefGoogle Scholar
  25. 25.
    Johnson, M., Demiris, Y.: Hierarchies of coupled inverse and forward models for abstraction in robot action planning, recognition and imitation. In: Proceedings of the AISB 2005 Symposium on Imitation in Animals and Artifacts, Newcastle upon Tyne, UK, pp. 69–76 (2005) Google Scholar
  26. 26.
    Kjellström, H., Kragić, D., Black, M.J.: Tracking people interacting with objects. In: Computer Vision and Pattern Recognition (2010) Google Scholar
  27. 27.
    Krueger, V., Baby, S., Herzog, D., Ude, A., Kragic, D.: Learning actions from observations. IEEE Robot. Autom. Mag. 17(2), 30–43 (2010) CrossRefGoogle Scholar
  28. 28.
    Kulić, D., Takano, W., Nakamura, Y.: Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden Markov chains. Int. J. Robot. Res. 27(7), 761–784 (2008) CrossRefGoogle Scholar
  29. 29.
    Kuniyoshi, Y., Inaba, M., Inoue, H.: Learning by watching, extracting reusable task knowledge from visual observation of human performance. IEEE Trans. Robot. Autom. 10(6), 799–822 (1994) CrossRefGoogle Scholar
  30. 30.
    Laptev, I., Lindeberg, T.: Space–time interest points. In: IEEE International Conference on Computer Vision (2003) Google Scholar
  31. 31.
    Laptev, I., Marszałek, I., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: Computer Vision and Pattern Recognition (2008) Google Scholar
  32. 32.
    Liu, H., Feris, R., Krüger, V., Sun, M.-T.: Unsupervised action classification using space–time link analysis. EURASIP Journal on Image and Video Processing 2010, 10 (2010). Article ID 626324 CrossRefGoogle Scholar
  33. 33.
    Lopes, M.C., Victor, J.S.: Visual transformations in gesture imitation: What you see is what you do. In: IEEE International Conference on Robotics and Automation, ICRA03, Taipei, Taiwan, September 14–19, pp. 2375–2381 (2003) CrossRefGoogle Scholar
  34. 34.
    Marszałek, M., Laptev, I., Schmid, C.: Actions in context. In: Computer Vision and Pattern Recognition (2009) Google Scholar
  35. 35.
    Nagel, H.-H.: From image sequences towards conceptual descriptions. Image Vis. Comput. 6(2), 59–74 (1988) CrossRefGoogle Scholar
  36. 36.
    Newtson, D., Engquist, D., Bois, J.: The objective basis of behavior units. J. Pers. Soc. Psychol. 35(12), 847–862 (1977) CrossRefGoogle Scholar
  37. 37.
    Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In: Int. Conf. Neural Information Processing Systems: Natural and Synthetic, Vancouver, British Columbia, Canada (December 3–8, 2001) Google Scholar
  38. 38.
    Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vis. 79(3), 299–318 (2008) CrossRefGoogle Scholar
  39. 39.
    Ogawara, K., Iba, S., Kimura, H., Ikeuchi, K.: Recognition of human task by attention point analysis. In: IEEE International Conference on Intelligent Robot and Systems IROS’00, Takamatsu, Japan, pp. 2121–2126 (2000) Google Scholar
  40. 40.
    Ogawara, K., Iba, S., Kimura, H., Ikeuchi, K.: Acquiring hand-action models by attention point analysis. In: IEEE International Conference on Robotics and Automation (ICRA01), Seoul, Korea, May 21–26, pp. 465–470 (2001) Google Scholar
  41. 41.
    Rizzolatti, G., Fogassi, L., Gallese, V.: Parietal cortex: From sight to action. Curr. Opin. Neurobiol. 7, 562–567 (1997) CrossRefGoogle Scholar
  42. 42.
    Rizzolatti, G., Fogassi, L., Gallese, V.: Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews 2, 661–670 (2001) CrossRefGoogle Scholar
  43. 43.
    Schaal, S.: Is imitation learning the route to humanoid robots? Trends Cogn. Sci. 3(6), 233–242 (1999) CrossRefGoogle Scholar
  44. 44.
    Schaal, S., Ijspeert, A.J., Billard, A.: Computational approaches to motor learning by imitation. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 358(1431), 537–547 (2003) CrossRefGoogle Scholar
  45. 45.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local SVM approach. In: International Conference on Pattern Recognition (ICPR), pp. 32–36 (2004) Google Scholar
  46. 46.
    Torralba, A.: Contextual priming for object detection. Int. J. Comput. Vis. 53(2), 169–191 (2003) CrossRefGoogle Scholar
  47. 47.
    Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: A survey. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008) CrossRefGoogle Scholar
  48. 48.
    Wang, X., Ma, X., Grimson, E.: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. IEEE Trans. Pattern Anal. Mach. Intell. 31, 539–555 (2009) CrossRefGoogle Scholar
  49. 49.
    Wilson, A., Bobick, A.: Parametric hidden Markov models for gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21, 884–900 (1999) CrossRefGoogle Scholar
  50. 50.
    Wörgötter, F., Agostini, A., Krüger, N., Shylo, N., Porr, B.: Cognitive agents – a procedural perspective relying on the predictability of object-action-complexes (OACs). Robot. Auton. Syst. 57(4), 420–432 (2009) CrossRefGoogle Scholar
  51. 51.
    Yao, B., Fei-Fei, L.: Grouplet: A structured image representation for recognizing human and object interactions. In: IEEE Conference on Computer Vision and Pattern Recognition (2010) Google Scholar
  52. 52.
    Yao, B., Fei-Fei, L.: Modeling mutual context of object and human pose in human–object interaction activities. In: IEEE Conference on Computer Vision and Pattern Recognition (2010) Google Scholar
  53. 53.
    Zentall, T.R.: Imitation: Definitions, evidence, and mechanisms. Animal Cognition 9, 335–353 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.Aalborg University CopenhagenBallerupDenmark

Personalised recommendations