Skip to main content

Feature-Based Pose Estimation

  • Chapter

Abstract

In this chapter we review challenges and methodology for feature-based predictive three-dimensional human pose reconstruction, based on image and video data. We argue that reliable 3D human pose prediction can be achieved through an alliance between image descriptors that encode multiple levels of selectivity and invariance and models that are capable to represent multiple structured solutions. For monocular systems, key to reliability is the capacity to leverage prior knowledge in order to bias solutions not only to kinematically feasible sets, but also toward typical configurations that humans are likely to assume in everyday surroundings. In this context, we discuss several predictive methods including large-scale mixture of experts, supervised spectral latent variable models and structural support vector machines, asses the impact of the various choices of image descriptors, review open problems, and give pointers to datasets and code available online.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Standard kernel regression models can be viewed as a special case of a conditional mixture with a single expert (M=1). We will thus not include separate derivations for kernel regression, the restriction to M=1 in (12.1) being straightforward.

  2. 2.

    Sampled configurations have parenthesized superscripts; subscripts index training datapoints.

References

  1. CMU Human Motion Capture Database. Available online at http://mocap.cs.cmu.edu/search.html (2003)

  2. Agarwal, A., Triggs, B.: Hyperfeatures – multilevel local coding for visual recognition. In: European Conference on Computer Vision (2006)

    Google Scholar 

  3. Agarwal, A., Triggs, B.: A local basis representation for estimating human pose from cluttered images. In: Asian Conference on Computer Vision (2006)

    Google Scholar 

  4. Andriluka, M., Roth, S., Schiele, B.: People tracking-by-detection and people-detection-by-tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  5. Balan, A., Black, M., Haussecker, H., Sigal, L.: Shining a light on human pose: On shadows, shading and the estimation of pose and shape. In: IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  6. Battu, B., Krappers, A., Koenderink, J.: Ambiguity in pictorial depth. Perception 36, 1290–1304 (2007)

    Article  Google Scholar 

  7. Bishop, C., Svensen, M.: Bayesian mixtures of experts. In: Conference on Uncertainty in Artificial Intelligence (2003)

    Google Scholar 

  8. Blaschko, M.B., Lampert, C.H.: Learning to localize objects with structured output regression. In: European Conference on Computer Vision, pp. 2–15 (2008)

    Google Scholar 

  9. Bo, L., Sminchisescu, C.: Supervised spectral latent variable models. In: International Conference on Artificial Intelligence and Statistics (2009)

    Google Scholar 

  10. Bo, L., Sminchisescu, C.: Twin Gaussian processes for structured prediction. Int. J. Comput. Vis. 87 (2010)

    Google Scholar 

  11. Bo, L., Sminchisescu, C., Kanaujia, A., Metaxas, D.: Fast algorithms for large scale conditional 3D prediction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  12. Böhning, D.: Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 44, 197–200 (2001)

    Article  Google Scholar 

  13. Bourdev, L., Malik, J.: Poselets: Body part detectors trained using 3d human pose annotations. In: IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  14. Brubaker, M., Fleet, D.: The Kneed Walker for human pose tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  15. Choo, K., Fleet, D.: People tracking using hybrid Monte Carlo filtering. In: IEEE International Conference on Computer Vision (2001)

    Google Scholar 

  16. Cook, R.D.: Regression Graphics. Wiley-Interscience, New York (1988)

    Google Scholar 

  17. Cortes, C., Mohri, M., Weston, J.: A general regression technique for learning transductions. In: International Conference on Machine Learning, pp. 153–160 (2005)

    Google Scholar 

  18. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  19. Deutscher, J., Davidson, A., Reid, I.: Articulated partitioning of high dimensional search spaces associated with articulated body motion capture. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  20. Edwards, D., Lauritzen, S.: The TM algorithm for maximising a conditional likelihood function. Biometrika 88(4), 961–972 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eichner, M., Ferrari, V.: We are family: Joint pose estimation of multiple persons. In: European Conference on Computer Vision (2010)

    Google Scholar 

  22. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2010)

    Article  Google Scholar 

  23. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1) (2005)

    Google Scholar 

  24. Friedman, J.: Greedy function approximation: A gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MATH  Google Scholar 

  25. Ionescu, C., Bo, L., Sminchisescu, C.: Structural SVM for visual localization and continuous state estimation. In: IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  26. Joachims, T., Finley, T., Yu, C.: Cutting-plane training of structural SVMs. Mach. Learn. 77, 27–59 (2009)

    Article  Google Scholar 

  27. Jordan, M., Jacobs, R.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6, 181–214 (1994)

    Article  Google Scholar 

  28. Kanaujia, A., Sminchisescu, C., Metaxas, D.: Semi-supervised hierarchical models for 3D human pose reconstruction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  29. Kanaujia, A., Sminchisescu, C., Metaxas, D.: Spectral latent variable models for perceptual inference. In: IEEE International Conference on Computer Vision, vol. 1 (2007)

    Google Scholar 

  30. Kehl, R., Bray, M., Gool, L.V.: Full body tracking from multiple views using stochastic sampling. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  31. Kim, M., Pavlovic, V.: Dimensionality reduction using covariance operator inverse regression. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  32. Koenderink, J.: Pictorial relief. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 356(1740), 1071–1086 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Koenderink, J., van Doorn, A.: The internal representation of solid shape with respect to vision. Biol. Cybern. 32(3), 211–216 (1979)

    Article  MATH  Google Scholar 

  34. Krishnapuram, B., Carin, L., Figueiredo, M.T., Hartemink, A.J.: Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 957–968 (2005)

    Article  Google Scholar 

  35. Lange, K., Hunter, D., Yang, I.: Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat. 9, 1–59 (2001)

    MathSciNet  Google Scholar 

  36. Lawrence, N.: Probabilistic non-linear component analysis with Gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)

    MathSciNet  Google Scholar 

  37. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  38. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, R.M., Huang, F.: A tutorial on energy-based learning. In: Predicting Structured Data. MIT Press, Cambridge (2006)

    Google Scholar 

  39. Lee, H.J., Chen, Z.: Determination of 3D human body postures from a single view. Comput. Vis. Graph. Image Process. 30, 148–168 (1985)

    Article  MathSciNet  Google Scholar 

  40. Lu, Z., Perpinan, M.C., Sminchisescu, C.: People tracking with the Laplacian eigenmaps latent variable model. In: Advances in Neural Information Processing Systems (2007)

    Google Scholar 

  41. Morris, D., Rehg, J.: Singularity analysis for articulated object tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 289–296 (1998)

    Google Scholar 

  42. Nistér, D., Stévenius, H.: Scalable recognition with a vocabulary tree. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  43. Poppe, R.: Evaluating example-based human pose estimation: Experiments on HumanEva sets. In: HumanEva Workshop CVPR (2007)

    Google Scholar 

  44. Ramanan, D., Sminchisescu, C.: Training deformable models for localization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  45. Rosales, R., Sclaroff, S.: Learning body pose via specialized maps. In: Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  46. Sapp, B., Toshev, A., Taskar, B.: Cascaded models for articulated pose estimation. In: European Conference on Computer Vision (2010)

    Google Scholar 

  47. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 994–1000 (2005)

    Google Scholar 

  48. Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter sensitive hashing. In: IEEE International Conference on Computer Vision (2003)

    Google Scholar 

  49. Sidenbladh, H., Black, M.: Learning image statistics for Bayesian tracking. In: IEEE International Conference on Computer Vision (2001)

    Google Scholar 

  50. Sidenbladh, H., Black, M., Fleet, D.: Stochastic tracking of 3D human figures using 2D image motion. In: European Conference on Computer Vision (2000)

    Google Scholar 

  51. Sidenbladh, H., Black, M., Sigal, L.: Implicit probabilistic models of human motion for synthesis and tracking. In: European Conference on Computer Vision (2002)

    Google Scholar 

  52. Sigal, L., Balan, A., Black, M.: HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vis. 87, 4–27 (2006)

    Article  Google Scholar 

  53. Sigal, L., Balan, A., Black, M.J.: Combined discriminative and generative articulated pose and non-rigid shape estimation. In: Advances in Neural Information Processing Systems (2007)

    Google Scholar 

  54. Sigal, L., Bhatia, S., Roth, S., Black, M., Isard, M.: Tracking loose-limbed people. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  55. Sigal, L., Black, M.: Predicting 3d people from 2d pictures. In: International Workshop on Articulated Motion and Deformable Objects (2006)

    Google Scholar 

  56. Sigal, L., Memisevic, R., Fleet, D.: Shared kernel information embedding for discriminative inference. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  57. Sminchisescu, C., Jepson, A.: Generative modeling for continuous non-linearly embedded visual inference. In: International Conference on Machine Learning, pp. 759–766 (2004)

    Google Scholar 

  58. Sminchisescu, C., Jepson, A.: Variational mixture smoothing for non-linear dynamical systems. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 608–615 (2004)

    Google Scholar 

  59. Sminchisescu, C., Kanaujia, A., Li, Z., Metaxas, D.: Discriminative density propagation for 3D human motion estimation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 390–397 (2005)

    Google Scholar 

  60. Sminchisescu, C., Kanaujia, A., Metaxas, D.: Learning joint top–down and bottom–up processes for 3D visual inference. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  61. Sminchisescu, C., Kanaujia, A., Metaxas, D.: BM 3 E: Discriminative density propagation for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. (2007)

    Google Scholar 

  62. Sminchisescu, C., Triggs, B.: Building roadmaps of local minima of visual models. In: European Conference on Computer Vision, vol. 1, pp. 566–582 (2002)

    Google Scholar 

  63. Sminchisescu, C., Triggs, B.: Hyperdynamics importance sampling. In: European Conference on Computer Vision, vol. 1, pp. 769–783 (2002)

    Google Scholar 

  64. Sminchisescu, C., Triggs, B.: Kinematic jump processes for monocular 3D human tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 69–76 (2003)

    Google Scholar 

  65. Sminchisescu, C., Triggs, B.: Mapping minima and transitions in visual models. Int. J. Comput. Vis. 61(1) (2005)

    Google Scholar 

  66. Sminchisescu, C., Welling, M.: Generalized darting Monte-Carlo. In: International Conference on Artificial Intelligence and Statistics, vol. 1 (2007)

    Google Scholar 

  67. Tipping, M., Faul, A.: Fast marginal likelihood maximisation for sparse Bayesian models. In: International Conference on Artificial Intelligence and Statistics (2003)

    Google Scholar 

  68. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  Google Scholar 

  69. Urtasun, R., Fleet, D., Hertzmann, A., Fua, P.: Priors for people tracking in small training sets. In: IEEE International Conference on Computer Vision (2005)

    Google Scholar 

  70. Urtasun, R., Fleet, D., Geiger, A., Popovic, J., Darrell, T., Lawrence, N.: Topologically-constrained latent variable models. In: International Conference on Machine Learning (2008)

    Google Scholar 

  71. Vincent, P., Bengio, Y.: Kernel matching pursuit. Mach. Learn. 48, 165–187 (2002)

    Article  MATH  Google Scholar 

  72. Vlasic, D., Adelsberger, R., Vannucci, G., Barwell, J., Gross, M., Matusik, W., Popovic, J.: Practical motion capture in everyday surroundings. ACM Trans. Graph. (2007)

    Google Scholar 

  73. Vondrak, M., Sigal, L., Jenkins, O.C.: Physical simulation for probabilistic motion tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  74. Wang, J., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models. In: IEEE Trans. Pattern Anal. Mach. Intell. (2008)

    Google Scholar 

  75. Weston, J., Schölkopf, B., Bousquet, O., Mann, T., Noble, W.: Joint kernel maps. In: International Work-Conference on Artificial Neural Networks, pp. 176–191 (2005)

    Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the European Commission under MCEXT-025481 and by CNCSIS-UEFISCU under project PN II-RU-RC-2/2009. This chapter reviews research presented in [9, 11, 25, 28].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Sminchisescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sminchisescu, C., Bo, L., Ionescu, C., Kanaujia, A. (2011). Feature-Based Pose Estimation. In: Moeslund, T., Hilton, A., Krüger, V., Sigal, L. (eds) Visual Analysis of Humans. Springer, London. https://doi.org/10.1007/978-0-85729-997-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-997-0_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-996-3

  • Online ISBN: 978-0-85729-997-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics