Methods and Technologies for Gait Analysis


Gait analysis is a highly active research area with a wide range of applications in clinical settings, surveillance and human-computer interaction. The focus of this chapter is the clinical aspect of gait analysis, in which accuracy and precision are essential. Subsequently, the chapter focuses on various techniques of measuring gait and introduces taxonomy for their analysis. From this perspective, motion measurements using motion capture and inertial sensors are presented. Motion capture techniques are analyzed under sections of marker-based and markerless techniques and their common applications are exemplified. Additionally, accelerometers, gyroscopes, magnetometers and their applications are presented in the inertial measurements section. Finally, force measurements and measurement of electrical activity of muscles are explained briefly.


Kalman Filter Ground Reaction Force Motion Capture Gait Analysis Body Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cappozzo, A., Della Croce, U., Leardini, A., Chiari, L.: Human movement analysis using stereophotogrammetry Part 1: theoretical background. Gait Posture 21, 186–196 (2005) Google Scholar
  2. 2.
    Aggarwal, J., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Underst. 73, 428–440 (1999) CrossRefGoogle Scholar
  3. 3.
    Davis, R.B., Õunpuu, S., Tyburski, D., Gage, J.R.: A gait analysis data collection and reduction technique. Hum. Mov. Sci. 10, 575–587 (1991) CrossRefGoogle Scholar
  4. 4.
    Cappozzo, A., Catani, F., Leardini, A., Benedetti, M.G., Della Croce, U.: Position and orientation in space of bones during movement: experimental artefacts. Clin. Biomech. 11(2), 90–100 (1995) CrossRefGoogle Scholar
  5. 5.
    Cappozzo, A., Catani, F., Della Croce, U., Leardini, A.: Position and orientation of bones during movement: anatomical frame definition and determination. Clin. Biomech. 10(4), 171–178 (1995) CrossRefGoogle Scholar
  6. 6.
    Benedetti, M.G., Catani, F., Leardini, A., Pignotti, E., Giannini, S.: Data management in gait analysis for clinical applications. Clin. Biomech. 13(3), 204–215 (1998) CrossRefGoogle Scholar
  7. 7.
    Donati, M., Camomilla, V., Vannozzi, G., Cappozzo, A.: Enhanced anatomical calibration in human movement analysis. Gait Posture 26, 179–185 (2007) CrossRefGoogle Scholar
  8. 8.
    Ferrari, A., et al.: Quantitative comparison of five current protocols in gait analysis. Gait Posture 28, 207–216 (2008) CrossRefGoogle Scholar
  9. 9.
    Baker, R.: Gait analysis methods in rehabilitation. J. NeuroEng. Rehabil. 3(4), 1–10 (2006) Google Scholar
  10. 10.
    Fioretti, S., Jetto, L.: Accurate derivate estimation from noisy data: a state space approach. Int. J. Syst. Sci. 20, 33–53 (1989) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chen, L., Armstrong, C.W., Raftopoulos, D.D.: An investigation on the accuracy of three-dimensional space reconstruction using the direct linear transformation technique. J. Biomech. 27(4), 493–500 (1994) CrossRefGoogle Scholar
  12. 12.
    Della Croce, U., Cappozzo, A.: A spot check for estimating stereophotogrammetric errors. Med. Biol. Eng. Comput. 38(3), 260–266 (2000) CrossRefGoogle Scholar
  13. 13.
    Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation into object space coordinates in close range photogrammetry. In: Proceedings of the ASP Symposium on Close-Range Photogram, Urbana, IL, pp. 1–18 (1971) Google Scholar
  14. 14.
    Woltring, H.J.: Planar control in multi-camera calibration for three dimensional gait studies. J. Biomech. 13(1), 39–48 (1980) CrossRefGoogle Scholar
  15. 15.
    Chiari, L., Della Croce, U., Leardini, A., Cappozzo, A.: Human movement analysis using stereophotogrammetry Part 2: Instrumental errors. Gait Posture 21, 197–211 (2005) CrossRefGoogle Scholar
  16. 16.
    Lucchetti, L., Cappozzo, A., Cappello, A., Della Croce, U.: Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics. J. Biomech. 31, 977–984 (1998) CrossRefGoogle Scholar
  17. 17.
    Alexander, E., Andriacchi, T.P.: Correcting for deformation in skin-based marker systems. Journal of Biomechanics 34, 355–361 Google Scholar
  18. 18.
    Della Croce, U., Leardini, A., Chiari, L., Cappozzo, A.: Human movement analysis using stereophotogrammetry Part 4: assessment of anatomical landmarks misplacement and its effects on joint kinematics. Gait Posture 21, 226–237 (2005) CrossRefGoogle Scholar
  19. 19.
    Corazza, S., Mündermann, L., Chaudhari, A.M., Demattio, T., Cobelli, C., Andriacchi, T.P.: A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann. Biomed. Eng. 34(6), 1019–1029 (2006) CrossRefGoogle Scholar
  20. 20.
    Gavrila, D.M.: The visual analysis of human movement: a survey. Comput. Vis. Image Underst. 73(1), 82–98 (1999) MATHCrossRefGoogle Scholar
  21. 21.
    Deutscher, J., Reid, A.: Articulated body motion capture by annealed particle filtering. In: Proceedings of Computer Vision and Pattern Recognition, South Carolina, pp. 126–133 (2000) Google Scholar
  22. 22.
    Poppe, R.: Vision-based human motion analysis: an overview. Comput. Vis. Image Underst. 108, 4–18 (2007) CrossRefGoogle Scholar
  23. 23.
    Cham, T.J., Rehg, J.M.: A multiple hypothesis approach to figure tracking. In: Proceedings of Computer Vision and Pattern Recognition, Ft. Collins, CO, pp. 239–245 (1999) Google Scholar
  24. 24.
    Howe, N.R., Leventon, M.E., Freeman, W.T.: Bayesian Reconstruction of 3D Human Motion from Single-Camera Video. Advances in Neural Information Processing Systems, vol. 12. MIT Press, Cambridge (2000) Google Scholar
  25. 25.
    Ju, S., Black, M.J., Yacoob, Y.: Cardboard people: a parametrized model of articulated image motion. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, Killington, pp. 38–44 (1996) Google Scholar
  26. 26.
    Mori, G., Malik, J.: Recovering 3D human body configurations using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1052–1062 (2006) CrossRefGoogle Scholar
  27. 27.
    Taylor, C.J.: Reconstruction of articulated objects from point correspondences in a single uncalibrated image. Comput. Vis. Image Underst. 80, 349–363 (2000) MATHCrossRefGoogle Scholar
  28. 28.
    Elgammal, A., Lee, C.S.: Inferring 3D body pose from silhouettes using activity manifold learning. In: Proceedings of Computer Vision and Pattern Recognition, Washington DC, USA, pp. 681–688 (2004) Google Scholar
  29. 29.
    Bottino, A., Laurentini, A.: A silhouette based technique for the reconstruction of human movement. Comput. Vis. Image Underst. 83, 79–95 (2001) MATHCrossRefGoogle Scholar
  30. 30.
    Bregler, C., Malik, J.: Tracking people with twists and exponential maps. In: Proceedings of Computer Vision and Pattern Recognition, Santa Barbara, CA, pp. 8–15 (1998) Google Scholar
  31. 31.
    Chu, C.W., Jenkins, O.C., Matari, M.J.: Towards model-free markerless motion capture. In: Proceedings of Computer Vision and Pattern Recognition, Madison, WI, pp. 475–482 (2003) Google Scholar
  32. 32.
    Grauman, K., Shakhnarovich, G., Darrell, T.: Inferring 3D structure with a statistical image-based shape model. In: Proceedings of International Conference on Computer Vision, Nice, France, vol. 1, pp. 641–647 (2003) CrossRefGoogle Scholar
  33. 33.
    Mündermann, L., Corazza, S., Andriacchi, T.P.: The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J. Neuroeng. Rehabil. (2006) Google Scholar
  34. 34.
    Bray, J.: Markerless based human motion capture: a survey. Department of Systems Engineering, Brunel University (2001) Google Scholar
  35. 35.
    Yun, X., Bachmann, E.: Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking. IEEE Trans. Robot. 22(6), 1216–1227 (2006) CrossRefGoogle Scholar
  36. 36.
    Mathie, M.J., Celler, B.G., Lovell, N.H., Coster, A.C.F.: Classification of basic daily movements using a triaxial accelerometer. Med. Biol. Eng. Comput. 42, 679–687 (2004) CrossRefGoogle Scholar
  37. 37.
    Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Proceedings of the 2nd International Conference on Pervasive Computing, Vienna, Austria, pp. 1–17 (2004) Google Scholar
  38. 38.
    Aminian, K., Robert, P.H., Buchser, E.E., Rutschmann, B., Hayoz, D., Deparion, M.: Physical activity monitoring based on accelerometry: validation and comparison with video observation. Med. Biol. Eng. Comput. 37(3), 304–308 (1999) CrossRefGoogle Scholar
  39. 39.
    Aminian, K., Najafi, B., Büla, C., Leyvraz, P.F., Robert, P.H.: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 35, 689–699 (2002) CrossRefGoogle Scholar
  40. 40.
    Tong, K., Granat, M.H.: A practical gait analysis system using gyroscopes. Med. Eng. Phys. 21, 87–94 (1999) CrossRefGoogle Scholar
  41. 41.
    Bachmann, E.R., Yun, X., Mickinney, D., McGhee, R.B., Zyda, M.J.: Design and Implementation of MARG sensors for 3-DOF orientation measurement of rigid bodies. In: Proceedings of the 2003 IEEE International Conference On Robotics & Automation, Taipei, Taiwan, September 14–19 2003 Google Scholar
  42. 42.
    Marins, J.L., Yun, X., Bachmann, E.R., McGhee, R.B., Zyda, M.J.: An extended Kalman filter for quaternion-based orientation estimation using MARG sensors. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA, pp. 2003–2011 (2001) Google Scholar
  43. 43.
    Shuster, M.D., Oh, S.D.: Three-axis attitude determination from vector observations. J. Guid. Control 4(1), 70–77 (1981) MATHCrossRefGoogle Scholar
  44. 44.
    Vaughan, C.L., Davis, B.L., Jeremy, C.O.C.: Dynamics of Human Gait. Kiboho, Cape Town (1999) Google Scholar
  45. 45.
    Soderberg, G.L., Cook, T.M.: Electromyography in biomechanics. Phys. Ther. 64, 1813–1820 (1984) Google Scholar
  46. 46.
    De Luca, C.J.: The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163 (1997) Google Scholar
  47. 47.
    Saey, D., Côté, C.H., Mador, J., Laviolette, L., Leblanc, P., Jobin, J., Maltais, F.: Assessment of muscle fatigue during exercise in chronic obstructive pulmonary disease. Muscle Nerve 34, 62–71 (2006) CrossRefGoogle Scholar
  48. 48.
    Mesin, L., Smith, S., Hugo, S., Viljoen, S., Hanekom, T.: Effect of spatial filtering on crosstalk reduction in surface EMG recordings. Med. Eng. Phys. 31, 374–383 (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Biomedical SciencesUniversity of SassariSassariItaly

Personalised recommendations