Computational Visual Attention

  • Simone Frintrop


Visual attention is one of the key mechanisms of perception that enables humans to efficiently select the visual data of most potential interest. Machines face similar challenges as humans: they have to deal with a large amount of input data and have to select the most promising parts. In this chapter, we explain the underlying biological and psychophysical grounding of visual attention, show how these mechanisms can be implemented computationally, and discuss why and under what conditions machines, especially robots, profit from such a concept.


Visual Search Visual Attention Training Image Salient Object Attention System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bruce, N.D.B., Tsotsos, J.K.: Saliency, attention, and visual search: An information theoretic approach. J. Vis. 9(3), 1–24 (2009) CrossRefGoogle Scholar
  2. 2.
    Bundesen, C., Habekost, T.: Attention. In: Lamberts, K., Goldstone, R. (eds.) Handbook of Cognition. Sage, London (2005) Google Scholar
  3. 3.
    Douma, M.: Color Vision and Art. Retrieved Nov 2010 from (2008)
  4. 4.
    Elazary, L., Itti, L.: Interesting objects are visually salient. J. Vis. 8(3), 3 (2008) CrossRefGoogle Scholar
  5. 5.
    Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. Lecture Notes in Artificial Intelligence (LNAI), vol. 3899. Springer, Berlin/Heidelberg (2006) CrossRefGoogle Scholar
  6. 6.
    Frintrop, S., Jensfelt, P.: Attentional landmarks and active gaze control for visual SLAM. IEEE Trans. Robot. 24(5) (2008). Special Issue on Visual SLAM Google Scholar
  7. 7.
    Frintrop, S., Rome, E., Christensen, H.I.: Computational visual attention systems and their cognitive foundations: A survey. ACM Trans. Appl. Percept. 7(1) (2010) Google Scholar
  8. 8.
    Gao, D., Han, S., Vasconcelos, N.: Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(6) (2009) Google Scholar
  9. 9.
    Itti, L., Baldi, P.: Bayesian surprise attracts human attention. Vis. Res. 49(10), 1295–1306 (2009) CrossRefGoogle Scholar
  10. 10.
    Itti, L., Koch, C.: Feature combination strategies for saliency-based visual attention systems. J. Electron. Imaging 10(1), 161–169 (2001) CrossRefGoogle Scholar
  11. 11.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998) CrossRefGoogle Scholar
  12. 12.
    James, W.: The Principles of Psychology. Dover, New York (1890) CrossRefGoogle Scholar
  13. 13.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Essentials of Neural Science and Behavior. McGraw-Hill/Appleton & Lange, New York (1996) Google Scholar
  14. 14.
    Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4(4), 219–227 (1985) Google Scholar
  15. 15.
    Liu, T., Zejian, Y., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.-Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2009) Google Scholar
  16. 16.
    Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT Press, Cambridge (1999) Google Scholar
  17. 17.
    Pashler, H.: The Psychology of Attention. MIT Press, Cambridge (1997) Google Scholar
  18. 18.
    Rotenstein, A., Andreopoulos, A., Fazl, E., Jacob, D., Robinson, M., Shubina, K., Zhu, Y., Tsotsos, J.K.: Towards the dream of intelligent, visually-guided wheelchairs. In: Proc. 2nd Int’l Conf. on Technology and Aging, Toronto, Canada, June 2007 Google Scholar
  19. 19.
    Torralba, A., Oliva, A., Castelhano, M., Henderson, J.: Contextual guidance of eye movements and attention in real-world scenes: The role of global features on object search. Psychol. Rev. 113(4) (2006) Google Scholar
  20. 20.
    Treisman, A.: Preattentive processing in vision. Comput. Vis. Graph. Image Process. 31, 156–177 (1985) CrossRefGoogle Scholar
  21. 21.
    Treisman, A.M., Gelade, G.: A feature integration theory of attention. Cogn. Psychol. 12, 97–136 (1980) CrossRefGoogle Scholar
  22. 22.
    Treisman, A.M., Gormican, S.: Feature analysis in early vision: Evidence from search asymmetries. Psychol. Rev. 95(1), 15–48 (1988) CrossRefGoogle Scholar
  23. 23.
    Tsotsos, J.K.: A ‘complexity level’ analysis of vision. In: Proc. of International Conference on Computer Vision: Human and Machine Vision Workshop, London, England, June 1987 Google Scholar
  24. 24.
    Tsotsos, J.K.: A Computational Perspective on Visual Attention. MIT Press, Cambridge (2011) Google Scholar
  25. 25.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004) CrossRefGoogle Scholar
  26. 26.
    Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks (2006) Google Scholar
  27. 27.
    Wolfe, J.M.: Guided search 2.0: A revised model of visual search. Psychon. Bull. Rev. 1(2), 202–238 (1994) CrossRefGoogle Scholar
  28. 28.
    Wolfe, J.M.: Visual search. In: Pashler, H. (ed.) Attention, pp. 13–74. Psychology Press, Hove (1998) Google Scholar
  29. 29.
    Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nat. Rev., Neurosci. 5, 1–7 (2004) CrossRefGoogle Scholar
  30. 30.
    Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TVL 1 optical flow. In: Proc. of the Annual Meeting of the German Assoc. for Pattern Recognition (DAGM) (2007) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Institute of Computer Science IIIRheinische Friedrich-Wilhelms Universität BonnBonnGermany

Personalised recommendations