Advertisement

Detecting and Tracking Action Content

  • Alper Yilmaz

Abstract

Detection and tracking of action content in the field of view of a camera is a significant step that needs to be completed prior to analysis. The detection task can be performed by either examining a single image or by analyzing the motion in a series of consecutive frames from a video. The tracking task, in contrast, requires multiple images and can be performed by association of detected objects or by iteratively estimating the motion in consecutive frames. This chapter provides insight to both tasks as they relate to the analysis of human actions.

Keywords

Optical Flow Interest Point Action Content Static Scene Harris Corner Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akita, K.: Image sequence analysis of real world human motion. Pattern Recognit. 17(1), 73–83 (1984) CrossRefGoogle Scholar
  2. 2.
    Ali, A., Aggarwal, J.K.: Segmentation and recognition of continuous human activity. In: IEEE Workshop on Detection and Recognition of Events in Video, pp. 28–35 (2001) CrossRefGoogle Scholar
  3. 3.
    Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: People detection and articulated pose estimation. In: IEEE Conf. on Computer Vision and Pattern Recognition (2009) Google Scholar
  4. 4.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002) CrossRefGoogle Scholar
  5. 5.
    Bertalmio, M., Sapiro, G., Randall, G.: Morphing active contours. IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 733–737 (2000) CrossRefGoogle Scholar
  6. 6.
    Black, M., Jepson, A.: Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. Int. J. Comput. Vis. 26(1), 63–84 (1998) CrossRefGoogle Scholar
  7. 7.
    Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: IEEE Int. Conf. on Computer Vision (2005) Google Scholar
  8. 8.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: IEEE Int. Conf. on Computer Vision, pp. 694–699 (1995) CrossRefGoogle Scholar
  9. 9.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 564–575 (2003) CrossRefGoogle Scholar
  10. 10.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 886–893 (2005) Google Scholar
  11. 11.
    Ek, C., Torr, P., Lawrence, N.: Gaussian process latent variable models for human pose estimation. In: Int. Conf on Machine Learning for Multimodal Interaction (2007) Google Scholar
  12. 12.
    Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: European Conf. on Computer Vision, pp. 751–767 (2000) Google Scholar
  13. 13.
    Fabbri, R., Costa, L., Torelli, J., Bruno, O.: 2D Euclidean distance transforms: a comparative survey. ACM Computing Surveys 40(1) (2008) Google Scholar
  14. 14.
    Felzenszwalb, P.F., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005) CrossRefGoogle Scholar
  15. 15.
    Felzenszwalb, P.F., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: IEEE Conf. on Computer Vision and Pattern Recognition (2008) Google Scholar
  16. 16.
    Freeman, W.T., Roth, M.: Orientation histograms for hand gesture recognition. In: IEEE Intl. Workshop on Automatic Face and Gesture Recognition, pp. 296–301 (1995) Google Scholar
  17. 17.
    Gavrila, D.M.: The visual analysis of human movement: A survey. Comput. Vis. Image Underst. 73(1), 82–98 (1999) MATHCrossRefGoogle Scholar
  18. 18.
    Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000) CrossRefGoogle Scholar
  19. 19.
    Harris, C.G., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference, pp. 147–151 (1988) Google Scholar
  20. 20.
    Hartley, R., Zisserman, A.: Multiple View Geometry. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  21. 21.
    Jain, R., Nagel, H.H.: On the analysis of accumulative difference pictures from image sequences of real world scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1(2), 206–214 (1979) CrossRefGoogle Scholar
  22. 22.
    Javed, O., Shafique, K., Shah, M.: A hierarchical approach to robust background subtraction using color and gradient information. In: IEEE Workshop on Motion and Video Computing (2002) Google Scholar
  23. 23.
    Jepson, A.D., Fleet, D.J., ElMaraghi, T.F.: Robust online appearance models for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1296–1311 (2003) CrossRefGoogle Scholar
  24. 24.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–332 (1988) CrossRefGoogle Scholar
  25. 25.
    Kuhn, H.W.: The Hungarian method for solving the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955) CrossRefGoogle Scholar
  26. 26.
    Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2), 107–123 (2005) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lee, M.W., Cohen, I., Jung, S.K.: Particle filter with analytical inference for human body tracking. In: IEEE Workshop on Motion and Video Computing (2002) Google Scholar
  28. 28.
    Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without reinitialization: A new variational formulation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 430–436 (2005) Google Scholar
  29. 29.
    Liu, J., Ali, S., Shah, M.: Recognizing human actions using multiple features. In: IEEE Conference on Computer Vision and Pattern Recognition (2008) Google Scholar
  30. 30.
    Liyuan, L., Maylor, L.: Integrating intensity and texture differences for robust change detection. IEEE Trans. Image Process. 11(2), 105–112 (2002) CrossRefGoogle Scholar
  31. 31.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004) CrossRefGoogle Scholar
  32. 32.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, pp. 121–130 (1981) Google Scholar
  33. 33.
    Lv, F., Nevatia, R.: Single view human action recognition using key pose matching and Viterbi path searching. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2007) CrossRefGoogle Scholar
  34. 34.
    Mansouri, A.R.: Region tracking via level set PDEs without motion computation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 947–961 (2002) CrossRefGoogle Scholar
  35. 35.
    Maskell, S., Gordon, N.: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. In: IEEE Target Tracking: Algorithms and Applications, vol. 2, pp. 1–15 (2001) Google Scholar
  36. 36.
    Maybeck, P.: Stochastic Models, Estimation, and Control. Mathematics in Science and Engineering, vol. 141. Elsevier, Amsterdam (1979) MATHGoogle Scholar
  37. 37.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1615–1630 (2003) Google Scholar
  38. 38.
    Moravec, H.P.: Visual mapping by a robot rover. In: Proc. of IJCAI, pp. 598–600 (1979) Google Scholar
  39. 39.
    Niyogi, S., Adelson, E.: Analyzing gait with spatiotemporal surfaces. In: Wrks. on Nonrigid and Artic. Motion (1994) Google Scholar
  40. 40.
    Oliver, N.M., Rosario, B., Pentland, A.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000) CrossRefGoogle Scholar
  41. 41.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 266–280 (2000) CrossRefGoogle Scholar
  42. 42.
    Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002) MATHCrossRefGoogle Scholar
  43. 43.
    Rangarajan, K., Shah, M.: Establishing motion correspondence. Comput. Vis. Graph. Image Process. 54(1), 56–73 (1991) MATHGoogle Scholar
  44. 44.
    Rao, C., Yilmaz, A., Shah, M.: View invariant representation and recognition of actions. Int. J. Comput. Vis. 50(2), 203–226 (2002) MATHCrossRefGoogle Scholar
  45. 45.
    Ren, X., Berg, A.C., Malik, J.: Recovering human body configurations using pairwise constraints between parts. In: IEEE Int. Conf. on Computer Vision (2005) Google Scholar
  46. 46.
    Riesenfeld, R.F.: Geometric Modeling with Splines: An Introduction. CRC Press, Boca Raton (2001) MATHGoogle Scholar
  47. 47.
    Schunk, B.G.: The image flow constraint equation. Comput. Vis. Graph. Image Process. 35, 20–46 (1986) CrossRefGoogle Scholar
  48. 48.
    Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor and its application to action recognition. In: ACM Multimedia (2007) Google Scholar
  49. 49.
    Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics Computer Vision and Material Sciences. Cambridge University Press, Cambridge (1999) Google Scholar
  50. 50.
    Shafique, K., Shah, M.: A non-iterative greedy algorithm for multi-frame point correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 51–65 (2005) CrossRefGoogle Scholar
  51. 51.
    Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1778–1792 (2005) CrossRefGoogle Scholar
  52. 52.
    Sigal, L., Black, M.: Measure locally, reason globally: Occlusion-sensitive articulated pose estimation. In: IEEE Conf. on Computer Vision and Pattern Recognition (2006) Google Scholar
  53. 53.
    Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–767 (2000) CrossRefGoogle Scholar
  54. 54.
    Syeda-Mahmood, T., Vasilescu, A., Sethi, S.: Recognizing action events from multiple viewpoints. In: IEEE Workshop on Detection and Recognition of Events in Video (2001) Google Scholar
  55. 55.
    Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on Riemannian manifolds. In: IEEE Conference on Computer Vision and Pattern Recognition (2007) Google Scholar
  56. 56.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010) CrossRefGoogle Scholar
  57. 57.
    Wren, C.R., Azarbayejani, A., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997) CrossRefGoogle Scholar
  58. 58.
    Yang, M., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002) CrossRefGoogle Scholar
  59. 59.
    Yilmaz, A.: Kernel based object tracking using asymmetric kernels with adaptive scale and orientation selection. Mach. Vis. Appl. J. (2010) Google Scholar
  60. 60.
    Yilmaz, A., Shah, M.: A differential geometric approach to representing the human actions. Comput. Vis. Image Underst. 109(3), 335–351 (2008) CrossRefGoogle Scholar
  61. 61.
    Yilmaz, A., Li, X., Shah, M.: Contour based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1531–1536 (2004) CrossRefGoogle Scholar
  62. 62.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4), 13 (2006) CrossRefGoogle Scholar
  63. 63.
    Zelnik-Manor, L.Z., Irani, M.: Event-based analysis of video. In: IEEE Conf. on Computer Vision and Pattern Recognition (2001) Google Scholar
  64. 64.
    Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900 (1996) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.The Ohio State UniversityColumbusUSA

Personalised recommendations