The Molecular Biology of Inflammatory Breast Cancer

  • Horacio Astudillo-de la VegaEmail author
  • Erika Ruiz-Garcia
  • Paula Juarez-Sanchez
  • Jaime G. de la Garza-Salazar
  • Oscar Gerardo Arrieta-Rodriguez


Inflammatory breast cancer (IBC) is a rare and clinically more aggressive type of breast cancer. This type of breast cancer is called “inflammatory” because the breast often appears to be swollen, reddened, or “inflamed.” Some studies have demonstrated an association between familial history of breast cancer and IBC; however, additional studies are required to demonstrate this. IBC is classified as breast cancer at stage IIIB or IV. Some signaling pathways undoubtedly provide novel therapeutic targets for developing IBC inhibitors. By means of a cell line study, the loss has been identified of Wnt signaling pathway-induced protein 3 (WISP3/CCN6; LIBC [Lost in Inflammatory Breast Cancer]). Microarray analysis in IBC compared in noninflammatory tumors has demonstrated a signature of IBC that includes genes involved in IGF signaling, which we will discuss later in the section on microarrays and genomic signatures in IBC. Overexpression of epidermal growth factor receptors (ErbB) is very common in IBC. In another study, the expression and correlation was evaluated of the protein caveolin-1, which is a structural protein of the IBC-cell membrane caveolar microdomains (also described in breast cancer cell lines) and not in the cells of noninflammatory mammary cancer tumors. A protein that has demonstrated to possess tumor suppressor properties in breast cancer is E-cadherin; likewise, it has been demonstrated that it is found to be overexpressed in IBC, allowing the formation of lymphovascular emboli, which offers cytoprotector and resistance mechanisms to the chemotherapy of IBC cells. The genomic profile of IBC and of noninflammatory breast tumors stratified according to hormonal receptor state and HER2.


Breast Cancer Epidermal Growth Factor Receptor Inflammatory Breast Cancer Epidermal Growth Factor Receptor Extracellular Regulatory Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Merajver SD, Sabel MS. Inflammatory breast cancer. In: Harris JR, Lippman ME, Morrow M, Osborne CK, editors. Diseases of the breast. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2004.Google Scholar
  2. 2.
    Anderson W, Schairer C, Chen B, Hance K, Levine P. Epidemiology of inflammatory breast cancer (IBC). Breast Dis. 2005;22:9–23.PubMedGoogle Scholar
  3. 3.
    Hamidullah, Changkija B, Konwar R. Role of interleukin-10 in breast cancer. Breast Cancer Res Treat. 2012 May;133(1):11–21.Google Scholar
  4. 4.
    Xie G, Yao Q, Liu Y, Du S, Liu A, Guo Z, Sun A, Ruan J, Chen L, Ye C, Yuan Y. IL-6-induced epithelial-­mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int J Oncol. 2011. doi: 10.3892/ijo.2011.1275.
  5. 5.
    Van Laere SJ, Van der Auwera I, Van den Eynden GG, et al. NF-kappaB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation. Br J Cancer. 2007;97:659–69.PubMedCrossRefGoogle Scholar
  6. 6.
    Cabioglu N, Gong Y, Islam R, et al. Expression of growth factor and chemokine receptors: new insights in the biology of inflammatory breast cancer. Ann Oncol. 2007;18:1021–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Macciò A, Madeddu C. Obesity, inflammation, and postmenopausal breast cancer: therapeutic implications. Sci World J. 2011;11:2020–36. Epub 2011 Oct 27.CrossRefGoogle Scholar
  8. 8.
    Bonafè M, Storci G, Franceschi C. Inflamm-aging of the stem cell niche: breast cancer as a paradigmatic example: breakdown of the multi-shell cytokine network fuels cancer in aged people. Bioessays. 2011. doi: 10.1002/bies.201100104.
  9. 9.
    Doyle SL, Donohoe CL, Lysaght J, Reynolds JV. Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc Nutr Soc. 2011;3:1–9.Google Scholar
  10. 10.
    Hojilla CV, Jackson HW, Khokha R. TIMP3 regulates mammary epithelial apoptosis with immune cell recruitment through differential TNF dependence (abstract). PLoS One. 2011;6(10):e26718. Epub 2011 Oct 28.PubMedCrossRefGoogle Scholar
  11. 11.
    Kleer CG, Zhang Y, Pan Q, Merajver SD. WISP3 (CCN6) is a secreted tumor suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia. 2004;6:179–85.PubMedCrossRefGoogle Scholar
  12. 12.
    Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92:1472–89.PubMedCrossRefGoogle Scholar
  13. 13.
    Dawood S, Broglio K, González-Angulo AM, et al. Prognostic value of body mass index in locally advanced breast cancer. Clin Cancer Res. 2008;14:1718–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Pollak M. Targeting insulin and insulin-like growth factor signalling in oncology. Curr Opin Pharmacol. 2008;8:384–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Zha J, O’Brien C, Savage H, et al. Molecular predictors of response to a humanized antiinsulin-like growth factor-I receptor monoclonal antibody in breast and colorectal cancer. Mol Cancer Ther. 2009;8:2110–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Jiralerspong S, Palla SL, Giordano SH, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009;27:3297–302.PubMedCrossRefGoogle Scholar
  17. 17.
    Goodwin PJ, Ligibel JA, Stambolic V. Metformin in breast cancer: time for action. J Clin Oncol. 2009;27:3271–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Bekhouche I, Finetti P, Adelaïde J, Ferrari A, TarpinC, Charafe-Jauffret E, Charpin C, Houvenaeghel G, Jacquemier J, Bidaut G, Birnbaum D, Viens P, Chaffanet M, Bertucci F. High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes (abstract). PLoS One. 2011;6(2):e16950.PubMedCrossRefGoogle Scholar
  19. 19.
    Aird KM, Allensworth JL, Batinic-Haberle I, Lyerly HK, Dewhirst MW, Devi GR. ErbB1/2 tyrosine kinase inhibitor mediates oxidative stress-induced apoptosis in inflammatory breast cancer cells. Breast Cancer Res Treat. 2011;132:109–19.PubMedCrossRefGoogle Scholar
  20. 20.
    Sezgin C, Gokmen E, Kapkac M, Zekioglu O, Esassolak M, Karabulut B, Sanli UA, Uslu R. p53 protein accumulation and presence of visceral metastasis are independent prognostic factors for survival in patients with metastatic inflammatory breast carcinoma. Med Princ Pract. 2011;20(2):159–64. Epub 2011 Jan 20.PubMedCrossRefGoogle Scholar
  21. 21.
    Nouh MA, Mohamed MM, El-Shinawi M, Shaalan MA, Cavallo-Medved D, Khaled HM, Sloane BF. Cathepsin B: a potential prognostic marker for inflammatory breast cancer (abstract). J Transl Med. 2011;9:1.PubMedGoogle Scholar
  22. 22.
    Ye Y, Téllez JD, Durazo M, Belcher M, Yearsley K, Barsky SH. E-cadherin accumulation within the lymphovascular embolus of inflammatory breast cancer is due to altered trafficking. Anticancer Res. 2010;30(10):3903–10.PubMedGoogle Scholar
  23. 23.
    Alpaugh ML, Tomlinson JS, Shao ZM, Barsky SH. A novel human xenograft model of inflammatory breast cancer. Cancer Res. 1999;59:5079–84.PubMedGoogle Scholar
  24. 24.
    Kleer CG, van Golen KL, Braun T, Merajver SD. Persistent E-cadherin expression in inflammatory breast cancer. Mod Pathol. 2001;14:458–64.PubMedCrossRefGoogle Scholar
  25. 25.
    Van den Eynden GG, Van der Auwera I, Van Laere S, et al. Validation of a tissue microarray to study ­differential protein expression in inflammatory and noninflammatory breast cancer. Breast Cancer Res Treat. 2004;85:13–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Tomlinson JS, Alpaugh ML, Barsky SH. An intact overexpressed E-cadherin/alpha/betacatenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res. 2001;61:5231–41.PubMedGoogle Scholar
  27. 27.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Alpaugh ML, Barsky SH. Reversible model of spheroid formation allows for high efficiency of gene delivery ex vivo and accurate gene assessment in vivo. Hum Gene Ther. 2002;13:1245–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Dong HM, Liu G, Hou YF, et al. Dominant-negative E-cadherin inhibits the invasiveness of inflammatory breast cancer cells in vitro. J Cancer Res Clin Oncol. 2007;133:83–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Al-Raawi D, Abu-El-Zahab H, El-Shinawi M, Mohamed MM. Membrane type-1 matrix metalloproteinase (MT1-MMP) correlates with the expression and activation of matrix metalloproteinase-2 (MMP-2) in inflammatory breast cancer. Int J Clin Exp Med. 2011;4(4):265–75. Epub 2011 Oct 11.PubMedGoogle Scholar
  31. 31.
    Baillo A, Giroux C, Ethier SP. Knock-down of amphiregulin inhibits cellular invasion in inflammatory breast cancer. J Cell Physiol. 2011;226(10):2691–701. doi: 10.1002/jcp. 22620.PubMedCrossRefGoogle Scholar
  32. 32.
    Iwamoto T, Bianchini G, Qi Y, Cristofanilli M, Lucci A, Woodward WA, Reuben JM, Matsuoka J, Gong Y, Krishnamurthy S, Valero V, Hortobagyi GN, Robertson F, Symmans WF, Pusztai L, Ueno NT. Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat. 2011;125(3):785–95. Epub 2010 Dec 9.PubMedCrossRefGoogle Scholar
  33. 33.
    Forozan F, Veldman R, Ammerman CA, et al. Molecular cytogenetic analysis of 11 new breast cancer cell lines. Br J Cancer. 1999;81:1328–34.PubMedCrossRefGoogle Scholar
  34. 34.
    van Golen KL, Bao L, DiVito MM, Wu Z, Prendergast GC, Merajver SD. Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther. 2002;1:575–83.PubMedGoogle Scholar
  35. 35.
    Sparano JA, Moulder S, Kazi A, et al. Phase II trial of tipifarnib plus neoadjuvant doxorubicin-cyclophosphamide in patients with clinical stage IIB-IIIC breast cancer. Clin Cancer Res. 2009;15:2942–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Van Laere SJ, Van den Eynden GG, Van der Auwera I, et al. Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat. 2006;95:243–55.PubMedCrossRefGoogle Scholar
  37. 37.
    González-Angulo AM, Sneige N, Buzdar AU, et al. p53 expression as a prognostic marker in inflammatory breast cancer. Clin Cancer Res. 2004;10:6215–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Guerin M, Gabillot M, Mathieu MC, et al. Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance. Int J Cancer. 1989;43:201–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Van der Auwera I, Van Laere SJ, Van den Eynden GG, et al. Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res. 2004;10:7965–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Parrett ML, Harris RE, Joarder FS, Ross MS, Clausen KP, Robertson FM. Cyclooxygenase-2 gene expression in human breast cancer. Int J Oncol. 1997;10:503–7.PubMedGoogle Scholar
  41. 41.
    Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84.PubMedCrossRefGoogle Scholar
  42. 42.
    Robertson FM, Simeone AM, Mazumdar A, et al. Molecular and pharmacological blockade of the EP4 receptor selectively inhibits both proliferation and invasion of human inflammatory breast cancer cells. J Exp Ther Oncol. 2008;7:299–312.PubMedGoogle Scholar
  43. 43.
    de Souza CH M, Toledo-Piza E, Amorin R, Barboza A, Tobias KM. Inflammatory mammary carcinoma in 12 dogs: clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment. Can Vet J. 2009;50:506–10.Google Scholar
  44. 44.
    Suzuki T, Fujii A, Ohya J, et al. Antitumor activity of a dual epidermal growth factor receptor and ErbB2 kinase inhibitor MP-412 (AV-412) in mouse xenograft models. Cancer Sci. 2009;100:1526–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Horacio Astudillo-de la Vega
    • 1
    Email author
  • Erika Ruiz-Garcia
    • 2
  • Paula Juarez-Sanchez
    • 3
  • Jaime G. de la Garza-Salazar
    • 4
  • Oscar Gerardo Arrieta-Rodriguez
    • 2
  1. 1.Laboratory of Translational Research in CancerOncology Hospital, National Medical Center “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS)Mexico CityMexico
  2. 2.Department of Medical OncologyInstituto Nacional de Cancerología-México (INCan), Secretaría de Salud (Ssa)Mexico CityMexico
  3. 3.Department of PathologyInstituto Nacional de Cancerologia-Mexico (INCan), SsaMexico CityMexico
  4. 4.Department of Clinical InvestigationInstituto Nacional de Cancerologia-MexicoMexico CityMexico

Personalised recommendations