Advertisement

Target Therapy in Inflammatory Breast Cancer

  • Flavia Morales-Vasquez
  • Horacio Noe Lopez-Basave
  • Claudia Arce-Salinas
  • Jose Luis Aguilar-Ponce
  • Oscar Gerardo Arrieta-Rodriguez
Chapter

Abstract

Systemic treatment with chemotherapy (CT) and other target therapies is the cornerstone in the treatment of the inflammatory breast cancer (IBC). Completeness a distinctive biological characterize and separate IBC from noninflammatory breast cancer.

These are characteristics that are associated with poor prognosis and include a high S-phase fraction, high grade, aneuploidy, loss of hormonal receptors, and overexpression of human epithelial receptor-2 (HER2), p-53-level mutations. IBC overexpresses E-cadherin, a calcium-regulating transmembrane glycoprotein that promotes cell-cell adhesion, and through this, promotes invasion with tumor emboli of the dermal lymphatic system. Dysregulation of p27kip1, a cyclin-dependent kinase (CDK), and high endothelial-cell proliferation, and the expression of lymphangiogenetic factors (VEGF-C, VEGF-D, VEGFR-3, Prox-1), and the lymphatic vascular endothelial receptor 1 and angiogenic factors (Basic fibroblast growth factor [bFGF], Vascular endothelial growth factor [VEGF], Interleukin-6 [IL-6], and IL-8).

The advent of new biological treatments has represented an additional benefit because the percentages of pathological response (PR) have improved, and there is even better prognosis.

At present, the target therapy is a new therapeutic resource, and progress is being made toward new horizons in the management of inflammatory breast cancer (IBC).

Keywords

Breast Cancer Metastatic Breast Cancer Target Therapy Pathological Response mTOR Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kleer CG, van Golen KL, Merajver SD. Molecular biology of breast cancer metastases inflammatory breast cancer: clinical syndrome and molecular determinants. Breast Cancer Res. 2000;2:423–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Turpin E, Bieche I, Berthaeau P, et al. The increased incidence of ERBB2 over expression and TP53 mutation in inflammatory breast cancer. Oncogene. 2002;21:7593–7.PubMedCrossRefGoogle Scholar
  3. 3.
    González-Angulo AM, Sneige N, Kau SW, et al. p53 expression as a prognostic marker in inflammatory breast cancer. Clin Cancer Res. 2004;10:6215–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Tomlinson JS, Aplaugh ML, Barsky SH. An intact overexpressed E-cadherin/alpha, beta-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res. 2001;61:5231–41.PubMedGoogle Scholar
  5. 5.
    González-Angulo AM, Guarneri V, Gong Y, et al. Down-regulation of the cyclin-dependent kinase inhibitor p27kip1 might correlate with poor disease-free and over-all survival in inflammatory breast cancer. Clin Breast Cancer. 2006;7:326–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Van der Auwera I, Van Laere SJ, Van Den Eyden GG, et al. Increased angiogenesis and lymphagiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res. 2004;10:7965–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Van der Auwera I, Van Den Eyden GG, Copaert CG, et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res. 2005;11:7637–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Laere SJ, Van Den Eyden GG, Van der Auwera I, et al. Identification of cell-of origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat. 2006;95:243–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Van Golen KL, Davies S, Wu ZF, et al. A novel putative low-affinity insulin-like growth factor-binding protein LIBC (lost in inflammatory breast cancer) and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res. 1995;5:2511–9.Google Scholar
  10. 10.
    Bossetti F, Saccozzi R, Lena MD, Salvadori B. Inflammatory cancer of the breast: analysis of 114 cases. J Surg Oncol. 1981;18:355–61.CrossRefGoogle Scholar
  11. 11.
    De la Garza JG, De la Huerta R, Torres TR, Sánchez BC. Different management of inflammatory breast carcinoma. Experience in 18 cases, during a period of 6 years (1970–76). In: Proceedings of the Annual American Society of Clinical Oncology, Denver, 1977 (Abstract no. C-32).Google Scholar
  12. 12.
    Ueno NT, Buzdar AU, Singletary SE, et al. Combined modality treatment of inflammatory breast carcinoma: twenty years of experience at MD Anderson Cancer Center. Cancer Chemother Pharmacol. 1997;40:321–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Hurley J, Doliny P, Reis I, et al. Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J Clin Oncol. 2006;24:1831–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Yarden Y. The EGFR family and its ligands in human cancer signaling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37 Suppl 4:S3–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Cho HS, Mason K, Ramyar KX, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421:756–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol. 2001;2:127–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Romond EH, Pérez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Slamon DJ, Leyland-Jones B, Shak S, et al. Human breast cancer: use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpress HER2. N Engl J Med. 2001;344:783–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Buzdar AU, Ibrahim NK, Francis D, et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth receptor 2-positive operable breast cancer. J Clin Oncol. 2005;23:3676–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Dawood S, González-Angulo AM, Peintinger F, et al. Efficacy and safety of neoadjuvant trastuzumab combined with paclitaxel and epirubicin: a retrospective review of the MD Anderson experience. Cancer. 2007;110:1195–200.PubMedCrossRefGoogle Scholar
  23. 23.
    Van Pelt AE, Mohsin S, Elledge RM, et al. Neoadjuvant trastuzumab and docetaxel in breast cancer: preliminary results. Clin Breast Cancer. 2003;4:348–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Limentani SA, Brufsky AM, Erban JK, et al. Phase II study of neoadjuvant docetaxel, vinorelbine, and trastuzumab followed by surgery and adjuvant doxorubicin plus cyclophosphamide in women with human epidermal growth factor receptor 2-overexpressing locally advanced breast cancer. J Clin Oncol. 2007;25:1232–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Burstein HJ, Harris LN, Gelman R, et al. Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant doxorubicin/cyclophosphamide for HER2 overexpressing stage II or III breast cancer: a pilot study. J Clin Oncol. 2003;21:46–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Geyer CE, Foster J, Lindquist D, et al. Lapatinib plus Capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Cristofanilli M, Boussen H, Baselga J, et al. A phase II combination study of lapatinib and paclitaxel as a neo-adjuvant therapy in patients with newly diagnosed inflammatory breast cancer (IBC). Breast Cancer Res Treat. 2006;100(Suppl I):S5. Abstr1.Google Scholar
  28. 28.
    Pérez EA, Koehler M, Byrne J, et al. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc. 2008;83:679–86.PubMedGoogle Scholar
  29. 29.
    Konecny GE, Pegram MD, Venkatesan N, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006;66:1630–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Wu Y, Amonkar MM, Sherrill BH, O’Shaughnessy J, Ellis C, Baselga J, Blackwell KL, Burstein HJ. Impact of lapatinib plus trastuzumab versus single-agent lapatinib on quality of life of patients with trastuzumab-refractory HER2+ metastatic breast cancer. Ann Oncol. 2011;22:2582–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Baselga J, Gelmon KA, Verma S, Wardley A, Conte P, Miles D, Bianchi G, Cortes J, McNally VA, Ross GA, Fumoleau P, Gianni L. Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J Clin Oncol. 2010;28(7):1138–44. Epub 2010 Feb 1.PubMedCrossRefGoogle Scholar
  32. 32.
    Wong KK, Fracasso PM, Bukowski RM, Lynch TJ, Munster PN, Shapiro GI, Jänne PA, Eder JP, Naughton MJ, Ellis MJ, Jones SF, Mekhail T, Zacharchuk C, Vermette J, Abbas R, Quinn S, Powell C, Burris HA. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin Cancer Res. 2009;15(7):2552–8. Epub 2009 Mar 24.PubMedCrossRefGoogle Scholar
  33. 33.
    Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, Girish S, Tibbitts J, Yi JH, Sliwkowski MX, Jacobson F, Lutzker SG, Burris HA. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol. 2010;28(16):2698–704. Epub 2010 Apr 26.PubMedCrossRefGoogle Scholar
  34. 34.
    Burris 3rd HA, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, Tan-Chiu E, Krop IE, Michaelson RA, Girish S, Amler L, Zheng M, Chu YW, Klencke B, O’Shaughnessy JA. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol. 2011;29(4):398–405. Epub 2010 Dec 20.PubMedCrossRefGoogle Scholar
  35. 35.
    Morrow PK, Wulf GM, Ensor J, Booser DJ, Moore JA, Flores PR, Xiong Y, Zhang S, Krop IE, Winer EP, Kindelberger DW, Coviello J, Sahin AA, Núñez R, Hortobagyi GN, Yu D, Esteva FJ. Phase I/II study of trastuzumab in combination with everolimus (RAD001) in patients with HER2-overexpressing metastatic breast cancer who progressed on trastuzumab-based therapy. J Clin Oncol. 2011;29(23):3126–32. Epub 2011 Jul 5.PubMedCrossRefGoogle Scholar
  36. 36.
    Jerusalem G, Fasolo A, Dieras V, Cardoso F, Bergh J, Vittori L, Zhang Y, Massacesi C, Sahmoud T, Gianni L. Phase I trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat. 2011;125(2):447–55. Epub 2010 Nov 25.PubMedCrossRefGoogle Scholar
  37. 37.
    Andre F, Campone M, O’Regan R, Manlius C, Massacesi C, Sahmoud T, Mukhopadhyay P, Soria JC, Naughton M, Hurvitz SA. Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J Clin Oncol. 2010;28(34):5110–5. Epub 2010 Oct 25.PubMedCrossRefGoogle Scholar
  38. 38.
    Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, Eiermann W, Hess D, Morant R, Semiglazov V, Borner M, Salzberg M, Ostapenko V, Illiger HJ, Behringer D, Bardy-Bouxin N, Boni J, Kong S, Cincotta M, Moore L. Phase II study of temsinolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2005;23(23):5314–22. Epub 2005 Jun 13.PubMedCrossRefGoogle Scholar
  39. 39.
    Linderholm BK, Lindh B, Beckman L, Erlanson M, Edin K, Travelin B, Bergh J, Grankvist K, Henriksson R. Prognostic correlation of basic fibroblast growth factor and vascular endothelial growth factor in 1307 primary breast cancer. Clin Breast Cancer. 2003;4(5):340–7.PubMedCrossRefGoogle Scholar
  40. 40.
    McCarthy NJ, Yang X, Linnoila IR, et al. Microvessel density, expression of estrogen receptor alpha, MIB-1, p53, and c-erbB-2 in inflammatory breast cancer. Clin Cancer Res. 2002;8:3857–62.PubMedGoogle Scholar
  41. 41.
    Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, Fehrenbacher L, Dickler M, Overmoyer BA, Reimann JD, Sing AP, Langmuir V, Rugo HS. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol. 2005;23(4):792–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Pérez EA, Shenkier T, Cella D, Davidson NE. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357(26):2666–76.PubMedCrossRefGoogle Scholar
  43. 43.
    Wedam SB, Low JA, Yang SX, et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol. 2006;24:769–77.PubMedCrossRefGoogle Scholar
  44. 44.
    Overmoyer B, Fu P, Hoppel C, et al. Inflammatory breast cancer as a model disease to study tumor angiogenesis: results of a phase IB trial of combination SU5416 and doxorubicin. Clin Cancer Res. 2007;13:5862–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Sonpavde G, Hutson TE. Pazopanib: a novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep. 2007;9:115–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Johnston SR, Hickish T, Ellis P, et al. Phase II study of the efficacy and tolerability of 2 dosing regimens of the farnesyl transferase inhibitor, R115777, in advanced breast cancer. J Clin Oncol. 2003;21:2492–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Flavia Morales-Vasquez
    • 1
  • Horacio Noe Lopez-Basave
    • 2
  • Claudia Arce-Salinas
    • 1
  • Jose Luis Aguilar-Ponce
    • 1
  • Oscar Gerardo Arrieta-Rodriguez
    • 3
  1. 1.Department of Medical OncologyInstituto Nacional de Cancerologia-MexicoTlalpan, Mexico CityMexico
  2. 2.Department of Oncological SurgeryInstituto Nacional de Cancerologia-MexicoMexico CityMexico
  3. 3.Department of Medical OncologyInstituto Nacional de Cancerologia-MexicoMexico CityMexico

Personalised recommendations