Skip to main content

Application of Minimum Distortion Filtering to Identification of Linear Systems Having Non-uniform Sampling Period

  • Chapter
System Identification, Environmental Modelling, and Control System Design

Abstract

We consider the problem of identification of continuous time systems when the data is collected using non-uniform sampling periods. We formulate this problem in the context of Nonlinear Filtering. We show how a new class of nonlinear filtering algorithm (Minimum Distortion Filtering) can be applied to this problem. A simple example is used to illustrate the performance of the algorithm. We also compare the results with those obtained from (a particular realization) of Particle Filtering.

The chapter is inspired by the work of Peter Young who has made a life time of contributions to parameter estimation for real world systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akashi, H., Kumamoto, H.: Random sampling approach to state estimation in switching environments. Automatica 13, 429–434 (1977)

    Article  MATH  Google Scholar 

  2. Anderson, B., Moore, J.B.: Optimal Filtering. Prentice Hall, Englewood Cliffs (1979)

    MATH  Google Scholar 

  3. Arasaratnam, I., Haykin, S., Elliott, R.: Discrete-time nonlinear filtering algorithms using gauss n Hermite quadrature. Proc. IEEE 95(5), 953–977 (2007)

    Article  Google Scholar 

  4. Bain, A., Crisan, D.: Fundamental of Stochastic Filtering, vol. 60. Springer, Berlin (2009). ISBN 978-0-387-76895-3

    Google Scholar 

  5. Bergman, N.: Recursive Bayesian estimation navigation and tracking applications. PhD thesis, Linkĺoping University (1999)

    Google Scholar 

  6. Cea, M.G., Goodwin, G.C.: A new paradigm for state estimation in nonlinear systems using Minimum Distortion Filtering. In: 18th IFAC World Congress, Milan (2011)

    Google Scholar 

  7. Cea, M.G., Goodwin, G.C.: A novel technique based on up-sampling for addressing modeling issues in sampled data nonlinear filtering. In: 18th IFAC World Congress, Milan (2011)

    Google Scholar 

  8. Chen, Z.: Bayesian filtering: From Kalman filters to particle filters, and beyond. Available at: http://users.isr.ist.utl.pt/~jpg/tfc0607/chen_bayesian.pdf (2003)

  9. Ding, F., Qiu, L., Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems. Automatica 45(2), 324–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feuer, A., Goodwin, G.: Sampling in Digital Signal Processing and Control. Birkhäuser Boston, Cambridge (1996)

    Book  MATH  Google Scholar 

  11. Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge (1974)

    Google Scholar 

  12. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Springer International Series in Engineering and Computer Science (1992)

    Book  MATH  Google Scholar 

  13. Geweke, J.: Monte Carlo Simulation and Numerical Integration. Elsevier, Amsterdam (1996). Chap. 15, pp. 731–800

    Google Scholar 

  14. Gilks, W.R., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics, 1st edn. Chapman & Hall/CRC Interdisciplinary Statistics. Chapman & Hall/CRC, London (1995)

    Google Scholar 

  15. Gillberg, J., Ljung, L.: Frequency domain identification of continuous-time output error models, Part II: Non-uniformly sampled data and b-spline output approximation. Automatica 46(1), 11–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goodwin, G., Cea, M.G.: State and parameter estimation via minimum distortion filtering with application to chemical processes control. In: 4th International Symposium on Advanced Control of Industrial Processes (2011)

    Google Scholar 

  17. Goodwin, G.C., Feuer, A., Müller, C.: Sequential Bayesian Filtering via Minimum Distorion Filtering, in Three Decades of Progress in Control Sciences, 1st edn. Springer, Berlin (2010)

    Google Scholar 

  18. Goodwin, G.C., Graebe, S., Salgado, M.E.: Control System Design. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  19. Goodwin, G.C., Yuz, J.I., Agüero, J.C., Cea, M.G.: Sampling and sampled-data models. In: Proceedings of American Control Conference, Baltimore, Maryland, USA (2010)

    Google Scholar 

  20. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc., F, Radar Signal Process. 140(2), 107–113 (2002)

    Article  Google Scholar 

  21. Graf, S., Lushgy, H.: Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics, no: 1730. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  22. Hammersley, J.M., Morton, K.W.: Poor man’s HEX:92s Monte Carlo. J. R. Stat. Soc. B 16(1), 23–28 (1954)

    MathSciNet  MATH  Google Scholar 

  23. Handschin, J.: Monte Carlo techniques for prediction and filtering of non-linear stochastic processes. Automatica 6(4), 555–563 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Handschin, J.E., Mayne, D.Q.: Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Int. J. Control 9, 547–559 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haykin, S.: Kalman Filtering and Neural Networks. Wiley-Interscience, New York (2001)

    Book  Google Scholar 

  26. Isard, M., Blake, A.: A Smoothing Filter for Condensation. Lecture Notes in Computer Science, vol. 1406 (1998)

    Google Scholar 

  27. Isidori, A.: Nonlinear Control Systems. Springer, New York (1995)

    MATH  Google Scholar 

  28. Jazwinski, A.: Stochastic Processes and Filtering Theory. Academic Press, San Diego (1970)

    MATH  Google Scholar 

  29. Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  30. Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khalil, H.: Nonlinear Systems, 2nd edn. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  32. Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)

    Article  MathSciNet  Google Scholar 

  33. Kushner, H.J.: On the differential equations satisfied by conditional probability densities of Markov processes, with applications. J. SIAM Control 2(1) (1962)

    Google Scholar 

  34. Larsson, E.K., Mossberg, M., Söderström, T.: Identification of continuous-time ARX models from irregularly sampled data. IEEE Trans. Autom. Control 52(3), 417–427 (2007)

    Article  Google Scholar 

  35. Larsson, E.K., Söderström, T.: Identification of continuous-time AR processes from unevenly sampled data. Automatica 38(4), 709–718 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, J.S.: Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat. Comput. 6(2), 113–119 (1996)

    Article  Google Scholar 

  37. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory IT-28, 127–135 (1982)

    MathSciNet  Google Scholar 

  38. McKelvey, T., Helmersson, A.: State-Space Parametrizations of Multivariable Linear Systems Using Tridiagonal Matrix Forms, vol. 4, pp. 3654–3659 (1996)

    Google Scholar 

  39. Metropolis, N.: The Monte Carlo method. Journal of the American Statistical Association 44(247) (1949)

    Google Scholar 

  40. Pagès, G., Pham, H.: Optimal quantization methods for nonlinear filtering with discrete-time observations. Bernoulli 11(5), 893–932 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer, Berlin (2005)

    Google Scholar 

  42. Schön, T.B.: Estimation of nonlinear dynamic systems—theory and applications. PhD thesis, Linköping Studies in Science and Technology (2006). http://www.control.isy.liu.se/research/~reports/Ph.D.Thesis/PhD998.pdf

  43. Seborg, D.E., Edgar, T.F., Mellichamp, D.A.: Process Dynamics and Control, 2nd edn. Wiley, New York (2003)

    Google Scholar 

  44. Strogatz, S.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Studies in Nonlinearity. Westview Press, Boulder (2001)

    Google Scholar 

  45. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley, Reading (2005)

    Google Scholar 

  46. Tanizaki, H.: Nonlinear and non-Gaussian state space modeling using sampling techniques. Ann. Inst. Stat. Math. 53, 63–81 (2001). doi:10.1023/A:1017916420893

    Article  MathSciNet  MATH  Google Scholar 

  47. Wills, A., Ninness, B., Gibson, S.: Maximum likelihood estimation of state space models from frequency domain data. IEEE Trans. Autom. Control 54(1), 19–33 (2009)

    Article  MathSciNet  Google Scholar 

  48. Zarchan, P., Musoff, H.: Fundamentals of Kalman Filtering: A Practical Approach, 2nd edn. Progress in Astronautics and Aeronautics. AIAA, Washington (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham C. Goodwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Goodwin, G.C., Cea, M.G. (2012). Application of Minimum Distortion Filtering to Identification of Linear Systems Having Non-uniform Sampling Period. In: Wang, L., Garnier, H. (eds) System Identification, Environmental Modelling, and Control System Design. Springer, London. https://doi.org/10.1007/978-0-85729-974-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-974-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-973-4

  • Online ISBN: 978-0-85729-974-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics