Application of Minimum Distortion Filtering to Identification of Linear Systems Having Non-uniform Sampling Period


We consider the problem of identification of continuous time systems when the data is collected using non-uniform sampling periods. We formulate this problem in the context of Nonlinear Filtering. We show how a new class of nonlinear filtering algorithm (Minimum Distortion Filtering) can be applied to this problem. A simple example is used to illustrate the performance of the algorithm. We also compare the results with those obtained from (a particular realization) of Particle Filtering.

The chapter is inspired by the work of Peter Young who has made a life time of contributions to parameter estimation for real world systems.


Kalman Filter Particle Filter Vector Quantization Voronoi Cell Particle Method 


  1. 1.
    Akashi, H., Kumamoto, H.: Random sampling approach to state estimation in switching environments. Automatica 13, 429–434 (1977) MATHCrossRefGoogle Scholar
  2. 2.
    Anderson, B., Moore, J.B.: Optimal Filtering. Prentice Hall, Englewood Cliffs (1979) MATHGoogle Scholar
  3. 3.
    Arasaratnam, I., Haykin, S., Elliott, R.: Discrete-time nonlinear filtering algorithms using gauss n Hermite quadrature. Proc. IEEE 95(5), 953–977 (2007) CrossRefGoogle Scholar
  4. 4.
    Bain, A., Crisan, D.: Fundamental of Stochastic Filtering, vol. 60. Springer, Berlin (2009). ISBN 978-0-387-76895-3 Google Scholar
  5. 5.
    Bergman, N.: Recursive Bayesian estimation navigation and tracking applications. PhD thesis, Linkĺoping University (1999) Google Scholar
  6. 6.
    Cea, M.G., Goodwin, G.C.: A new paradigm for state estimation in nonlinear systems using Minimum Distortion Filtering. In: 18th IFAC World Congress, Milan (2011) Google Scholar
  7. 7.
    Cea, M.G., Goodwin, G.C.: A novel technique based on up-sampling for addressing modeling issues in sampled data nonlinear filtering. In: 18th IFAC World Congress, Milan (2011) Google Scholar
  8. 8.
    Chen, Z.: Bayesian filtering: From Kalman filters to particle filters, and beyond. Available at: (2003)
  9. 9.
    Ding, F., Qiu, L., Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems. Automatica 45(2), 324–332 (2009) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Feuer, A., Goodwin, G.: Sampling in Digital Signal Processing and Control. Birkhäuser Boston, Cambridge (1996) MATHCrossRefGoogle Scholar
  11. 11.
    Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge (1974) Google Scholar
  12. 12.
    Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Springer International Series in Engineering and Computer Science (1992) MATHCrossRefGoogle Scholar
  13. 13.
    Geweke, J.: Monte Carlo Simulation and Numerical Integration. Elsevier, Amsterdam (1996). Chap. 15, pp. 731–800 Google Scholar
  14. 14.
    Gilks, W.R., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics, 1st edn. Chapman & Hall/CRC Interdisciplinary Statistics. Chapman & Hall/CRC, London (1995) Google Scholar
  15. 15.
    Gillberg, J., Ljung, L.: Frequency domain identification of continuous-time output error models, Part II: Non-uniformly sampled data and b-spline output approximation. Automatica 46(1), 11–18 (2010) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Goodwin, G., Cea, M.G.: State and parameter estimation via minimum distortion filtering with application to chemical processes control. In: 4th International Symposium on Advanced Control of Industrial Processes (2011) Google Scholar
  17. 17.
    Goodwin, G.C., Feuer, A., Müller, C.: Sequential Bayesian Filtering via Minimum Distorion Filtering, in Three Decades of Progress in Control Sciences, 1st edn. Springer, Berlin (2010) Google Scholar
  18. 18.
    Goodwin, G.C., Graebe, S., Salgado, M.E.: Control System Design. Prentice Hall, Upper Saddle River (2001) Google Scholar
  19. 19.
    Goodwin, G.C., Yuz, J.I., Agüero, J.C., Cea, M.G.: Sampling and sampled-data models. In: Proceedings of American Control Conference, Baltimore, Maryland, USA (2010) Google Scholar
  20. 20.
    Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc., F, Radar Signal Process. 140(2), 107–113 (2002) CrossRefGoogle Scholar
  21. 21.
    Graf, S., Lushgy, H.: Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics, no: 1730. Springer, Berlin (2000) MATHCrossRefGoogle Scholar
  22. 22.
    Hammersley, J.M., Morton, K.W.: Poor man’s HEX:92s Monte Carlo. J. R. Stat. Soc. B 16(1), 23–28 (1954) MathSciNetMATHGoogle Scholar
  23. 23.
    Handschin, J.: Monte Carlo techniques for prediction and filtering of non-linear stochastic processes. Automatica 6(4), 555–563 (1970) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Handschin, J.E., Mayne, D.Q.: Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Int. J. Control 9, 547–559 (1969) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Haykin, S.: Kalman Filtering and Neural Networks. Wiley-Interscience, New York (2001) CrossRefGoogle Scholar
  26. 26.
    Isard, M., Blake, A.: A Smoothing Filter for Condensation. Lecture Notes in Computer Science, vol. 1406 (1998) Google Scholar
  27. 27.
    Isidori, A.: Nonlinear Control Systems. Springer, New York (1995) MATHGoogle Scholar
  28. 28.
    Jazwinski, A.: Stochastic Processes and Filtering Theory. Academic Press, San Diego (1970) MATHGoogle Scholar
  29. 29.
    Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004) CrossRefGoogle Scholar
  30. 30.
    Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Khalil, H.: Nonlinear Systems, 2nd edn. Prentice-Hall, Upper Saddle River (1996) Google Scholar
  32. 32.
    Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kushner, H.J.: On the differential equations satisfied by conditional probability densities of Markov processes, with applications. J. SIAM Control 2(1) (1962) Google Scholar
  34. 34.
    Larsson, E.K., Mossberg, M., Söderström, T.: Identification of continuous-time ARX models from irregularly sampled data. IEEE Trans. Autom. Control 52(3), 417–427 (2007) CrossRefGoogle Scholar
  35. 35.
    Larsson, E.K., Söderström, T.: Identification of continuous-time AR processes from unevenly sampled data. Automatica 38(4), 709–718 (2002) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Liu, J.S.: Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat. Comput. 6(2), 113–119 (1996) CrossRefGoogle Scholar
  37. 37.
    Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory IT-28, 127–135 (1982) MathSciNetGoogle Scholar
  38. 38.
    McKelvey, T., Helmersson, A.: State-Space Parametrizations of Multivariable Linear Systems Using Tridiagonal Matrix Forms, vol. 4, pp. 3654–3659 (1996) Google Scholar
  39. 39.
    Metropolis, N.: The Monte Carlo method. Journal of the American Statistical Association 44(247) (1949) Google Scholar
  40. 40.
    Pagès, G., Pham, H.: Optimal quantization methods for nonlinear filtering with discrete-time observations. Bernoulli 11(5), 893–932 (2005) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer, Berlin (2005) Google Scholar
  42. 42.
    Schön, T.B.: Estimation of nonlinear dynamic systems—theory and applications. PhD thesis, Linköping Studies in Science and Technology (2006).
  43. 43.
    Seborg, D.E., Edgar, T.F., Mellichamp, D.A.: Process Dynamics and Control, 2nd edn. Wiley, New York (2003) Google Scholar
  44. 44.
    Strogatz, S.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Studies in Nonlinearity. Westview Press, Boulder (2001) Google Scholar
  45. 45.
    Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley, Reading (2005) Google Scholar
  46. 46.
    Tanizaki, H.: Nonlinear and non-Gaussian state space modeling using sampling techniques. Ann. Inst. Stat. Math. 53, 63–81 (2001). doi: 10.1023/A:1017916420893 MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Wills, A., Ninness, B., Gibson, S.: Maximum likelihood estimation of state space models from frequency domain data. IEEE Trans. Autom. Control 54(1), 19–33 (2009) MathSciNetCrossRefGoogle Scholar
  48. 48.
    Zarchan, P., Musoff, H.: Fundamentals of Kalman Filtering: A Practical Approach, 2nd edn. Progress in Astronautics and Aeronautics. AIAA, Washington (2005) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceUniversity of NewcastleUniversity DriveAustralia

Personalised recommendations