Skip to main content
  • 3220 Accesses

Abstract

This chapter honors Peter, then, in recounting my career-long experience (1970–2010) of staring down the devilishly difficult: the problem of model structure identification—of using models for discovery. I still regard this matter as one of the grand challenges of environmental modeling (Beck et al., White Paper, 2009). If I appear modest about our progress in the presence of such enormity, so I am. But let no-one presume that I am therefore not greatly enthused by the progress I believe I and my students (now colleagues) have made over these four decades. It has been a privilege to be allowed the time to work on such a most attractive and engaging topic.

When contemplating the interpretation of some time-series data, often have I thought: “Why bother with the struggle, when I could simply pass it all over to the virtuoso—Peter”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It did not, as it happens. The two co-exist fruitfully today, notwithstanding the supposed academic inferiority of the latter.

  2. 2.

    The EPCL, a platform for real-time monitoring of water quality in a variety of aquatic environments, was operated from 1997 through 2008. All the data bases gathered with it are archived in the Georgia Watershed Information System (GWIS) and are publicly and freely available for downloading and analysis at www.georgiawis.org.

References

  1. Alvarez-Vasquez, F., Sims, K.L., Cowart, L.A., Okamoto, Y., Voit, E.O., Hannun, Y.A.: Simulation and validation of modelled sphingolipid metabolism in Saccharomyces Cerevisiae. Nature 433, 425–430 (2005)

    Article  Google Scholar 

  2. Beck, M.B.: The application of control and systems theory to problems of river pollution. Ph.D. dissertation, University of Cambridge, UK (1973)

    Google Scholar 

  3. Beck, M.B.: Model structure identification from experimental data. In: Halfon, E. (ed.) Theoretical Systems Ecology: Advances and Case Studies, pp. 259–289. Academic, New York (1979)

    Google Scholar 

  4. Beck, M.B.: Uncertainty, system identification and the prediction of water quality. In: Beck, M.B., van Straten, G. (eds.) Uncertainty and Forecasting of Water Quality, pp. 3–68. Springer, Berlin (1983)

    Google Scholar 

  5. Beck, M.B.: Structures, failure, inference, and prediction. In: Barker, H.A., Young, P.C. (eds.) Identification and System Parameter Estimation, pp. 1443–1448. Pergamon, Oxford (1985)

    Google Scholar 

  6. Beck, M.B.: Water quality modeling: a review of the analysis of uncertainty. Water Resour. Res. 23(8), 1393–1442 (1987)

    Article  Google Scholar 

  7. Beck, M.B. (ed.): Environmental Foresight and Models: A Manifesto. Elsevier, Oxford (2002), 473 pp.

    Google Scholar 

  8. Beck, M.B.: Model evaluation and performance. In: El-Shaarawi, A.H., Piegorsch, W.W. (eds.) Encyclopedia of Environmetrics, vol. 3, pp. 1275–1279. Wiley, Chichester (2002)

    Google Scholar 

  9. Beck, M.B.: Structural change: a definition. In: Beck, M.B. (ed.) Environmental Foresight and Models: A Manifesto, pp. 51–60. Elsevier, Amsterdam (2002)

    Chapter  Google Scholar 

  10. Beck, M.B., Young, P.C.: Systematic identification of DO-BOD model structure. J. Environ. Eng. Div. 102(5), 909–927 (1976). Proceedings American Society of Civil Engineers

    Google Scholar 

  11. Beck, M.B., Stigter, J.D., Lloyd Smith, D.: D: Elasto-plastic deformation of the structure. In: Beck, M.B. (ed.) Environmental Foresight and Models: A Manifesto, pp. 323–350. Elsevier, Oxford (2002)

    Chapter  Google Scholar 

  12. Beck, M.B., Gupta, H., Rastetter, E., Shoemaker, C., Tarboton, D., Butler, R., Edelson, D., Graber, H., Gross, L., Harmon, T., McLaughlin, D., Paola, C., Peters, D., Scavia, D., Schnoor, J.L., Weber, L.: Grand challenges of the future for environmental modeling. White Paper, National Science Foundation, Arlington, Virginia (2009) (ISBN: 978-1-61584-248-3)

    Google Scholar 

  13. Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden Day, San Francisco (1970)

    MATH  Google Scholar 

  14. Brun, R., Reichert, P., Künsch, H.R.: Practical identifiability analysis of large environmental simulation models. Water Resour. Res. 37(4), 1015–1030 (2001)

    Article  Google Scholar 

  15. Brun, R., Kühni, M., Siegrist, H., Gujer, W., Reichert, P.: Practical identifiability of ASM2d parameters—systematic selection and tuning of parameter subsets. Water Res. 36(16), 4113–4127 (2002)

    Article  Google Scholar 

  16. Hunt, C.A., Ropella, G.E.P., Lam, T.N., Tang, J., Kim, S.H.J., Engelberg, J.A., Sheikh-Bahaei, S.: At the biological modeling and simulation frontier. Pharm. Res. 26(11), 2369–2400 (2009). doi:10.1007/s11095-009-9958-3

    Article  Google Scholar 

  17. Lin, Z.: Modeling environmental systems under uncertainty: towards a synthesis of data-based and theory-based models. Ph.D. dissertation, University of Georgia, Athens, Georgia (2003)

    Google Scholar 

  18. Lin, Z., Beck, M.B.: On the identification of model structure in hydrological and environmental systems. Water Resour. Res. 43, W02402 (2007a). doi:10.1029/2005WR004796

    Article  Google Scholar 

  19. Lin, Z., Beck, M.B.: Understanding complex environmental systems: a dual approach. Environmetrics 18(1), 11–26 (2007b)

    Article  MathSciNet  Google Scholar 

  20. Lin, Z., Beck, M.B.: Accounting for structural error and uncertainty in a model: An approach based on model parameters as stochastic processes. Environ. Model. Softw. (2010, in press)

    Google Scholar 

  21. Ljung, L.: Asymptotic behaviour of the extended Kalman filter as a parameter estimator. IEEE Trans. Autom. Control 24, 36–50 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. MacFarlane, A.G.J.: Interactive computing: a revolutionary medium for teaching and design. Comput. Control J. 1(4), 149–158 (1990)

    Article  Google Scholar 

  23. Mooney, C.: Storm World—Hurricanes, Politics, and the Battle Over Global Warming. Harcourt, Orlando (2007)

    Google Scholar 

  24. NRC: Models in Environmental Regulatory Decision Making. National Research Council, National Academy Press, Washington (2007), 267 pp

    Google Scholar 

  25. NSF: Sensors for environmental observatories. Report of the NSF-sponsored Workshop, December 2004, National Science Foundation (2005), 64 pp

    Google Scholar 

  26. NSF: Simulation-based engineering science: revolutionizing engineering science through simulation. Report of the National Science Foundation Blue Ribbon Panel, National Science Foundation (2006), 65 pp

    Google Scholar 

  27. NSF: Cyber-enabled discovery and innovation (CDI). Program Solicitation NSF 07-603 (2007) (www.nsf.gov)

  28. Norton, J.P.: Optimal smoothing in the identification of linear time-varying systems. Proc. Inst. Electr. Eng. 122, 663–668 (1975)

    Article  Google Scholar 

  29. Omlin, M., Brun, R., Reichert, P.: Biogeochemical model of lake Zürich: sensitivity, identifiability and uncertainty analysis. Ecol. Model. 141(1–3), 105–123 (2001)

    Article  Google Scholar 

  30. Oppenheimer, M., O’Neill, B.C., Webster, M., Agrawala, S.: The limits of consensus. Science 317, 1505–1506 (2007)

    Article  Google Scholar 

  31. Petersen, B., Gernaey, K., Vanrolleghem, PA: Practical identifiability of model parameters by combined respirometric-titrimetric measurements. Water Sci. Technol. 43(7), 347–355 (2001)

    Google Scholar 

  32. Popper, K.R.: The Unending Quest: An Intellectual Autobiography. Fontana-Collins, Glasgow (1976)

    Google Scholar 

  33. Raick, C., Soetart, K., Grégoire, M.: Model complexity and performance: how far can we simplify? Prog. Oceanogr. 70, 27–57 (2006)

    Article  Google Scholar 

  34. Stigter, J.D.: The development and application of a continuous-discrete recursive prediction error algorithm in environmental systems analysis. Ph.D. dissertation, University of Georgia, Athens, Georgia (1997)

    Google Scholar 

  35. Stigter, J.D., Beck, M.B.: On the development and application of a continuous-discrete recursive prediction error algorithm. Math. Biosci. 191(2), 143–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stigter, J.D., Vries, D., Keesman, K.J.: On adaptive optimal input design: a bioreactor case study. AIChE J. 52(9), 3290–3296 (2006)

    Article  Google Scholar 

  37. Tushingham, AM, Peltier, W.R.: Validation of the ICE-3G model of Würm-Wisconsin deglaciation using a global data base of relative sea level histories. J. Geophys. Res. 97(B3), 3285–3304 (1992)

    Article  Google Scholar 

  38. Young, P.C.: Recursive Estimation and Time Series Analysis: An Introduction. Springer, New York (1984)

    MATH  Google Scholar 

  39. Young, P.C.: Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. Environ. Model. Softw. 12, 105–122 (1998)

    Google Scholar 

  40. Young, P.C.: Nonstationary time series analysis and forecasting. Prog. Environ. Sci. 1, 3–48 (1999)

    Google Scholar 

  41. Young, P.C.: The identification and estimation of nonlinear stochastic systems. In: Mees, A.I. (ed.) Nonlinear Dynamics and Statistics, pp. 127–166. Birkhäuser, Boston (2001)

    Google Scholar 

  42. Young, P.C., Parkinson, S.: Simplicity out of complexity. In: Beck, M.B. (ed.) Environmental Foresight and Models: A Manifesto, pp. 251–301. Elsevier, Oxford (2002)

    Chapter  Google Scholar 

  43. Young, P.C., Ratto, M.: A unified approach to environmental systems modeling. J. Stoch. Environ. Res. Risk Assess. 23, 1037–1057 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Support for this work has been provided over the decades by the University of Cambridge, the International Institute for Applied Systems Analysis, Imperial College London, and the University of Georgia (UGA). In particular, funding for the Environmental Process Control Laboratory of UGA, together with support for graduate assistantships for ZL and JDS, has come from the Wheatley-Georgia Research Alliance endowed Chair in Water Quality and Environmental Systems. The freedom of enquiry enabled through this form of financial support has simply been invaluable. We are also indebted to J P Bond, for his visualization and graphic design of Figs. 4.6, 4.7 and 4.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Beck .

Editor information

Editors and Affiliations

Additional information

Personal Tribute to Professor Peter C. Young from the First Author (MBB).

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Beck, M.B., Lin, Z., Stigter, J.D. (2012). Model Structure Identification and the Growth of Knowledge. In: Wang, L., Garnier, H. (eds) System Identification, Environmental Modelling, and Control System Design. Springer, London. https://doi.org/10.1007/978-0-85729-974-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-974-1_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-973-4

  • Online ISBN: 978-0-85729-974-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics