Linear and Nonlinear Non-minimal State Space Control System Design

  • C. James Taylor
  • Arun Chotai
  • Wlodek Tych


This tutorial chapter uses case studies based on recent engineering applications, to re-examine the non-minimal, state variable feedback approach to control system design. We show how the non-minimal state space (NMSS) representation seems to be the natural description of a discrete-time Transfer Function, since its dimension is dictated by the complete structure of the model. This is in contrast to minimal state space descriptions, which only account for the order of the denominator and whose state variables, therefore, usually represent combinations of input and output signals. The resulting control algorithm can be interpreted as a logical extension of the conventional Proportional-Integral (PI) controller, facilitating its straightforward implementation using a standard hardware-software arrangement. Finally, the basic NMSS approach is readily extended into multivariable, model-predictive and nonlinear control systems, hence the chapter briefly discusses these areas and gives pointers to the latest research results.


Model Predictive Control Control System Design Transfer Function Model Pole Assignment Model Mismatch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors welcome this opportunity to contribute to a book in honour of Professor Peter Young. We have particular reason to celebrate Peter’s friendship, ideas and advice over many years. We are also grateful to Essam Shaban [28] and Philip Cross.


  1. 1.
    Evans, W.R.: Analysis of control system. AIEE Trans. 67, 547–551 (1948) Google Scholar
  2. 2.
    Bode, H.W.: Feedback amplifier design. Bell Syst. Tech. J. 19, 42 (1940) Google Scholar
  3. 3.
    Kuo, B.C.: Digital Control Systems. CBS Publishing Japan Ltd, Tokyo (1980) Google Scholar
  4. 4.
    Dorf, R.C., Bishop, R.H.: Modern Control Systems. Pearson Prentice Hall, Upper Saddle River (2008) Google Scholar
  5. 5.
    Taylor, C.J., Pedregal, D.J., Young, P.C., Tych, W.: Environmental time series analysis and forecasting with the Captain Toolbox. Environ. Model. Softw. 22, 797–814 (2007) CrossRefGoogle Scholar
  6. 6.
    Young, P.C.: Recursive Estimation and Time Series Analysis. Springer, Berlin, (1984) MATHGoogle Scholar
  7. 7.
    Young, P.C., Behzadi, M.A., Wang, C.L., Chotai, A.: Direct digital and adaptive control by input-output, state variable feedback pole assignment. Int. J. Control 46, 1867–1881 (1987) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Young, P.C.: Stochastic, dynamic modelling and signal processing: time variable and state dependent parameter estimation. In: Fitzgerald, W.J. (ed.) Nonlinear and Nonstationary Signal Processing. Cambridge University Press, Cambridge (2000) Google Scholar
  9. 9.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME Trans. J. Basic Eng. 83, 95–108 (1960) MathSciNetGoogle Scholar
  10. 10.
    Luenberger, D.G.: Observing the state of a linear system. IEEE Trans. Mil. Electron. 8, 74–80 (1964) CrossRefGoogle Scholar
  11. 11.
    Young, P.C., Willems, J.C.: An approach to the linear multivariable servomechanism problem. Int. J. Control 15, 961–979 (1972) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hesketh, T.: Linear quadratic methods for adaptive control—a tutorial. Control Systems Centre Report 765, UMIST, Manchester, UK (1992) Google Scholar
  13. 13.
    Taylor, C.J., Young, P.C., Chotai, A., Whittaker, J.: Non-minimal state space approach to multivariable ramp metering control of motorway bottlenecks. IEE Proc., Control Theory Appl. 145(6), 568–574 (1998) CrossRefGoogle Scholar
  14. 14.
    Gonzalez, A.H., Perez, J.M., Odloak, D.: Infinite horizon MPC with non-minimal state space feedback. J. Process Control 19, 473–481 (2009) CrossRefGoogle Scholar
  15. 15.
    Gawthrop, P.J., Wang, L., Young, P.C.: Continuous-time non-minimal state-space design. Int. J. Control 80, 1690–1697 (2007) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Chotai, A., Young, P.C., McKenna, P., Tych, W.: PIP design for delta-operator systems (parts I and II). Int. J. Control 70, 123–168 (1998) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Taylor, C.J., Chotai, A., Young, P.C.: State space control system design based on non-minimal state-variable feedback: further generalisation and unification results. Int. J. Control 73, 1329–1345 (2000) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Taylor, C.J., Chotai, A., Young, P.C.: Nonlinear control by input-output state variable feedback pole assignment. Int. J. Control 82, 1029–1044 (2009) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Young, P.C., Lees, M., Chotai, A., Tych, W., Chalabi, Z.S.: Modelling and PIP control of a glasshouse micro-climate. Control Eng. Pract. 2(4), 591–604 (1994) CrossRefGoogle Scholar
  20. 20.
    Taylor, C.J., Young, P.C., Chotai, A., Mcleod, A.R., Glasock, A.R.: Modelling and PIP control design for free air carbon dioxide enrichment systems. J. Agric. Eng. Res. 75, 365–374 (2000) CrossRefGoogle Scholar
  21. 21.
    Taylor, C.J., Leigh, P.A., Chotai, A., Young, P.C., Vranken, E., Berckmans, D.: Cost effective combined axial fan and throttling valve control of ventilation rate. IEE Proc., Control Theory Appl. 151(5), 577–584 (2004) CrossRefGoogle Scholar
  22. 22.
    Gu, J., Taylor, C.J., Seward, D.W.: The automation of bucket position for the intelligent excavator LUCIE using the Proportional-Integral-Plus (PIP) control strategy. J. Comput.-Aided Civil Infrastruct. Eng. 12, 16–27 (2004) CrossRefGoogle Scholar
  23. 23.
    Shaban, E.M., Ako, S., Taylor, C.J., Seward, D.W.: Development of an automated verticality alignment system for a vibro-lance. Autom. Constr. 17, 645–655 (2008) CrossRefGoogle Scholar
  24. 24.
    Taylor, C.J., Chotai, A., Robertson, D.: State dependent control of a robotic manipulator used for nuclear decommissioning activities. In: IEEE International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan (2010) Google Scholar
  25. 25.
    Taylor, C.J., Shaban, E.M., Stables, M.A., Ako, S.: Proportional-Integral-Plus (PIP) control applications of state dependent parameter models. IMECHE Proc., J. Syst. Control Eng. 221, 1019–1032 (2007) CrossRefGoogle Scholar
  26. 26.
    Taylor, C.J., Shaban, E.M.: Multivariable proportional-integral-plus (PIP) control of the ALSTOM nonlinear gasifier simulation. IEE Proc., Control Theory Appl. 153(3), 277–285 (2006) CrossRefGoogle Scholar
  27. 27.
    Challender, A., Hartree, D.R., Porter, A.: Time lag in a control system. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Sci. 235, 415–444 (1936) CrossRefGoogle Scholar
  28. 28.
    Shaban, E.M.: Nonlinear control for construction robots using state dependent parameter models. PhD thesis, Lancaster University, Engineering Department (2006) Google Scholar
  29. 29.
    Taylor, C.J., Young, P.C., Chotai, A.: PIP optimal control with a risk sensitive criterion. In: UKACC International Control Conference, Exeter, UK (1996) Google Scholar
  30. 30.
    Exadaktylos, V., Taylor, C.J.: Multi-objective performance optimisation for model predictive control by goal attainment. Int. J. Control 83, 1374–1386 (2010) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Young, P.C.: A general approach to identification, estimation and control for a class of nonlinear dynamic systems. In: Friswell, M.I., Mottershead, J.E. (eds.) Identification in Engineering Systems, Swansea, UK, pp. 436–445 (1996) Google Scholar
  32. 32.
    Banks, H.T., Lewis, B.M., Tran, H.T.: Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach. Comput. Optim. Appl. 37, 177–218 (2007) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Taylor, C.J., Chotai, A., Burnham, K.J.: Controllable forms for stabilising pole assignment design of generalised bilinear systems. Electron. Lett. 47(7), 437–439 (2011) CrossRefGoogle Scholar
  34. 34.
    Wang, L., Young, P.C., Gawthrop, P.J., Taylor, C.J.: Non-minimal state-space model-based continuous-time model predictive control with constraints. Int. J. Control 82, 1122–1137 (2009) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Wang, L., Young, P.C.: An improved structure for model predictive control using non-minimal state space realisation. J. Process Control 16(4), 355–371 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Engineering DepartmentLancaster UniversityLancasterUK
  2. 2.Lancaster Environment CentreLancaster UniversityLancasterUK

Personalised recommendations