Chaos Theory for Modeling Environmental Systems: Philosophy and Pragmatism

  • Bellie Sivakumar


The last two decades have witnessed a significant momentum in chaos theory applications to environmental systems. The outcomes are certainly encouraging, especially considering the still fairly exploratory stage of the theory in the field. Nevertheless, there have also been persistent skepticisms and criticisms on these studies, motivated by the potential limitations in chaos identification methods. The goal of this chapter is to offer a balanced perspective of chaos studies in environmental systems: between the philosophy of chaos theory and the down-to-earth pragmatism needed in its applications. After a presentation of the development of chaos theory, some basic identification methods are described and their reliability for determining system properties demonstrated. A brief review of chaos theory studies in environmental systems as well as the progress and pitfalls is then made. Analysis of four river flow series presents support to the contention that environmental systems are neither deterministic nor stochastic, but a combination of the two, and that chaos theory can offer a middle-ground approach to our extreme deterministic and stochastic views.


Correlation Dimension Environmental System Chaos Theory Flow Series Phase Space Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported in part by the Korean Research Foundation funded by the Korean Government (MEST) (KRF-2009-D0010).


  1. 1.
    Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1996) MATHCrossRefGoogle Scholar
  2. 2.
    Abarbanel, H.D.I., Lall, U.: Nonlinear dynamics of the Great Salt Lake: system identification and prediction. Clim. Dyn. 12, 287–297 (1996) CrossRefGoogle Scholar
  3. 3.
    Casdagli, M.: Nonlinear prediction of chaotic time series. Physica D 35, 335–356 (1989) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Casdagli, M.: Chaos and deterministic versus stochastic nonlinear modeling. J. R. Stat. Soc. B 54(2), 303–328 (1992) MathSciNetGoogle Scholar
  5. 5.
    Dodov, B., Foufoula-Georgiou, E.: Incorporating the spatiotemporal distribution of rainfall and basin geomorphology into nonlinear analysis of streamflow dynamics. Adv. Water Resour. 28(7), 711–728 (2005) CrossRefGoogle Scholar
  6. 6.
    Elshorbagy, A., Simonovic, S.P., Panu, U.S.: Estimation of missing streamflow data using principles of chaos theory. J. Hydrol. 255, 123–133 (2002) CrossRefGoogle Scholar
  7. 7.
    Farmer, D.J., Sidorowich, J.J.: Predicting chaotic time series. Phys. Rev. Lett. 59, 845–848 (1987) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25–52 (1987) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice-Hall, Englewood Cliffs (1993) Google Scholar
  10. 10.
    Gleick, J.: Chaos: Making of a New Science. Penguin Books, New York (1987) MATHGoogle Scholar
  11. 11.
    Goerner, S.J.: Chaos and the Evolving Ecological Universe. Gordon and Breach, Langhorne (1994) Google Scholar
  12. 12.
    Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983) CrossRefGoogle Scholar
  14. 14.
    Henon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hossain, F., Sivakumar, B.: Spatial pattern of arsenic contamination in shallow wells of Bangladesh: regional geology and nonlinear dynamics. Stoch. Environ. Res. Risk Assess. 20(1–2), 66–76 (2006) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hossain, F., Anagnostou, E.N., Lee, K.H.: A non-linear and stochastic response surface method for Bayesian estimation of uncertainty in soil moisture simulation from a land surface model. Nonlinear Process. Geophys. 11, 427–440 (2004) CrossRefGoogle Scholar
  17. 17.
    Jayawardena, A.W., Gurung, A.B.: Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach. J. Hydrol. 228, 242–264 (2000) CrossRefGoogle Scholar
  18. 18.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997) MATHGoogle Scholar
  19. 19.
    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase space reconstruction using a geometric method. Phys. Rev. A 45, 3403–3411 (1992) CrossRefGoogle Scholar
  20. 20.
    Koutsoyiannis, D.: On the quest for chaotic attractors in hydrological processes. Hydrol. Sci. J. 51(6), 1065–1091 (2006) CrossRefGoogle Scholar
  21. 21.
    Kyoung, M.S., Kim, H.S., Sivakumar, B., Singh, V.P., Ahn, K.S.: Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change. Stoch. Environ. Res. Risk Assess. 25(4), 613–625 (2011) CrossRefGoogle Scholar
  22. 22.
    Linsay, P.S.: Period doubling and chaotic behaviour in a driven anharmonic oscillator. Phys. Rev. Lett. 47, 1349–1352 (1981) CrossRefGoogle Scholar
  23. 23.
    Lisi, F., Villi, V.: Chaotic forecasting of discharge time series: a case study. J. Am. Water Resour. Assoc. 37(2), 271–279 (2001) CrossRefGoogle Scholar
  24. 24.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  25. 25.
    May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976) CrossRefGoogle Scholar
  26. 26.
    Nerenberg, M.A.H., Essex, C.: Correlation dimension and systematic geometric effects. Phys. Rev. A 42(12), 7065–7074 (1990) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45(9), 712–716 (1980) CrossRefGoogle Scholar
  28. 28.
    Phillips, J.D.: Sources of nonlinearity and complexity in geomorphic systems. Prog. Phys. Geogr. 26, 339–361 (2003) Google Scholar
  29. 29.
    Phillips, J.D.: Deterministic chaos and historical geomorphology: a review and look forward. Geomorphology 76, 109–121 (2006) CrossRefGoogle Scholar
  30. 30.
    Phoon, K.K., Islam, M.N., Liaw, C.Y., Liong, S.Y.: A practical inverse approach for forecasting of nonlinear time series analysis. J. Hydrol. Eng. 7(2), 116–128 (2002) CrossRefGoogle Scholar
  31. 31.
    Porporato, A., Ridolfi, R.: Nonlinear analysis of river flow time sequences. Water Resour. Res. 33(6), 1353–1367 (1997) CrossRefGoogle Scholar
  32. 32.
    Puente, C.E., Obregon, N.: A deterministic geometric representation of temporal rainfall. Results for a storm in Boston. Water Resour. Res. 32(9), 2825–2839 (1996) CrossRefGoogle Scholar
  33. 33.
    Regonda, S., Sivakumar, B., Jain, A.: Temporal scaling in river flow: can it be chaotic? Hydrol. Sci. J. 49(3), 373–385 (2004) CrossRefGoogle Scholar
  34. 34.
    Rodriguez-Iturbe, I., De Power, F.B., Sharifi, M.B., Georgakakos, K.P.: Chaos in rainfall. Water Resour. Res. 25(7), 1667–1675 (1989) CrossRefGoogle Scholar
  35. 35.
    Rossler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976) CrossRefGoogle Scholar
  36. 36.
    Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Schertzer, D., Tchiguirinskaia, I., Lovejoy, S., Hubert, P., Bendjoudi, H.: Which chaos in the rainfall-runoff process? A discussion on ‘Evidence of chaos in the rainfall-runoff process’ by Sivakumar et al. Hydrol. Sci. J. 47(1), 139–147 (2002) CrossRefGoogle Scholar
  38. 38.
    Schreiber, T., Kantz, H.: Observing and predicting chaotic signals: is 2 percent noise too much. In: Kravtsov, Yu.A., Kadtke, J.B. (eds.) Predictability of Complex Dynamical Systems. Springer Series in Synergetics, pp. 43–65. Springer, Berlin (1996) Google Scholar
  39. 39.
    Sivakumar, B.: Chaos theory in hydrology: important issues and interpretations. J. Hydrol. 227(1–4), 1–20 (2000) CrossRefGoogle Scholar
  40. 40.
    Sivakumar, B.: Rainfall dynamics at different temporal scales: a chaotic perspective. Hydrol. Earth Syst. Sci. 5(4), 645–651 (2001) CrossRefGoogle Scholar
  41. 41.
    Sivakumar, B.: A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. J. Hydrol. 258, 149–162 (2002) CrossRefGoogle Scholar
  42. 42.
    Sivakumar, B.: Chaos theory in geophysics: past, present and future. Chaos Solitons Fractals 19(2), 441–462 (2004) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Sivakumar, B.: Correlation dimension estimation of hydrologic series and data size requirement: myth and reality. Hydrol. Sci. J. 50(4), 591–604 (2005) MathSciNetCrossRefGoogle Scholar
  44. 44.
    Sivakumar, B.: Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward. Stoch. Environ. Res. Risk Assess. 23, 1027–1036 (2009) CrossRefGoogle Scholar
  45. 45.
    Sivakumar, B., Jayawardena, A.W.: An investigation of the presence of low-dimensional chaotic behavior in the sediment transport phenomenon. Hydrol. Sci. J. 47(3), 405–416 (2002) CrossRefGoogle Scholar
  46. 46.
    Sivakumar, B., Liong, S.Y., Liaw, C.Y., Phoon, K.K.: Singapore rainfall behavior: chaotic? J. Hydrol. Eng. 4(1), 38–48 (1999) CrossRefGoogle Scholar
  47. 47.
    Sivakumar, B., Phoon, K.K., Liong, S.Y., Liaw, C.Y.: A systematic approach to noise reduction in chaotic hydrological time series. J. Hydrol. 219(3/4), 103–135 (1999) CrossRefGoogle Scholar
  48. 48.
    Sivakumar, B., Berndttson, R., Olsson, J., Jinno, K.: Evidence of chaos in the rainfall-runoff process. Hydrol. Sci. J. 46(1), 131–145 (2001) CrossRefGoogle Scholar
  49. 49.
    Sivakumar, B., Sorooshian, S., Gupta, H.V., Gao, X.: A chaotic approach to rainfall disaggregation. Water Resour. Res. 37(1), 61–72 (2001) CrossRefGoogle Scholar
  50. 50.
    Sivakumar, B., Berndtsson, R., Olsson, J., Jinno, K.: Reply to ‘Which chaos in the rainfall-runoff process?’ by Schertzer et al. Hydrol. Sci. J. 47(1), 149–158 (2002) CrossRefGoogle Scholar
  51. 51.
    Sivakumar, B., Jayawardena, A.W., Fernando, T.M.G.H.: River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 265(1–4), 225–245 (2000) Google Scholar
  52. 52.
    Sivakumar, B., Persson, M., Berndtsson, R., Uvo, C.B.: Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series? Water Resour. Res. (2002). doi: 10.1029/2001WR000333 Google Scholar
  53. 53.
    Sivakumar, B., Wallender, W.W., Puente, C.E., Islam, M.N.: Streamflow disaggregation: a nonlinear deterministic approach. Nonlinear Process. Geophys. 11, 383–392 (2004) CrossRefGoogle Scholar
  54. 54.
    Sivakumar, B., Harter, T., Zhang, H.: Solute transport in a heterogeneous aquifer: a search for nonlinear deterministic dynamics. Nonlinear Process. Geophys. 12, 211–218 (2005) CrossRefGoogle Scholar
  55. 55.
    Sivakumar, B., Berndtsson, R., Lall, U.: Nonlinear deterministic dynamics in hydrologic systems: present activities and future challenges. Nonlinear Processes. Geophys. (2006) Google Scholar
  56. 56.
    Sivakumar, B., Jayawardena, A.W., Li, W.K.: Hydrologic complexity and classification: a simple data reconstruction approach. Hydrol. Process. 21(20), 2713–2728 (2007) CrossRefGoogle Scholar
  57. 57.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, Cambridge (1994) Google Scholar
  58. 58.
    Swinney, H.L., Gollub, J.P.: Hydrodynamic instabilities and the transition to turbulence. Phys. Today 31(8), 41–49 (1998) CrossRefGoogle Scholar
  59. 59.
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S. (eds.) Dynamical Systems and Turbulence. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981) CrossRefGoogle Scholar
  60. 60.
    Teitsworth, S.W., Westervelt, R.M.: Chaos and broad-band noise in extrinsic photoconductors. Phys. Rev. Lett. 53(27), 2587–2590 (1984) CrossRefGoogle Scholar
  61. 61.
    Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D.: Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94 (1992) MATHCrossRefGoogle Scholar
  62. 62.
    Tsonis, A.A.: Chaos: From Theory to Applications. Plenum Press, New York (1992) Google Scholar
  63. 63.
    Tsonis, A.A., Triantafyllou, G.N., Elsner, J.B., Holdzkom, J.J. II, Kirwan, A.D. Jr.: An investigation on the ability of nonlinear methods to infer dynamics from observables. Bull. Am. Meteorol. Soc. 75, 1623–1633 (1994) CrossRefGoogle Scholar
  64. 64.
    Wang, Q., Gan, T.Y.: Biases of correlation dimension estimates of streamflow data in the Canadian prairies. Water Resour. Res. 34(9), 2329–2339 (1998) CrossRefGoogle Scholar
  65. 65.
    Wilcox, B.P., Seyfried, M.S., Matison, T.M.: Searching for chaotic dynamics in snowmelt runoff. Water Resour. Res. 27(6), 1005–1010 (1991) CrossRefGoogle Scholar
  66. 66.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985) MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Yevjevich, V.M.: Misconceptions in hydrology and their consequences. Water Resour. Res. 4(2), 225–232 (1968) CrossRefGoogle Scholar
  68. 68.
    Young, P.C.: Recursive approaches to time-series analysis. Bull. Inst. Math. Appl. 10, 209–224 (1974) Google Scholar
  69. 69.
    Young, P.C.: Data-based mechanistic modeling of environmental, ecological, economic and engineering systems. Environ. Model. Softw. 13, 105–122 (1998) CrossRefGoogle Scholar
  70. 70.
    Young, P.C.: The data-based mechanistic approach to the modelling, forecasting and control of environmental systems. Annu. Rev. Control 30, 169–182 (2006) CrossRefGoogle Scholar
  71. 71.
    Young, P.C., Beck, M.B.: The modelling and control of water quality in a river system. Automatica 10, 455–468 (1974) CrossRefGoogle Scholar
  72. 72.
    Young, P.C., Beven, K.J.: Data-based mechanistic modeling and rainfall-flow non-linearity. EnvironMetrics 5(3), 335–363 (1994) CrossRefGoogle Scholar
  73. 73.
    Young, P.C., Lees, M.J.: The active mixing volume: a new concept in modelling environmental systems. In: Barnett, V., Turkman, K. (eds.) Statistics for the Environment, pp. 3–43. Wiley, Chichester (1993) Google Scholar
  74. 74.
    Young, P.C., Parkinson, S.: Simplicity out of complexity. In: Beck, M.B. (ed.) Environmental Foresight and Models: A Manifesto, pp. 251–294. Elsevier, Oxford (2002) CrossRefGoogle Scholar
  75. 75.
    Young, P.C., Ratto, M.: A unified approach to environmental systems modeling. Stoch. Environ. Res. Risk Assess. 23, 1037–1057 (2009) CrossRefGoogle Scholar
  76. 76.
    Young, P.C., Parkinson, S.D., Lees, M.: Simplicity out of complexity: Occam’s razor revisited. J. Appl. Stat. 23, 165–210 (1996) CrossRefGoogle Scholar
  77. 77.
    Zhou, Y., Ma, Z., Wang, L.: Chaotic dynamics of the flood series in the Huaihe River Basin for the last 500 years. J. Hydrol. 258, 100–110 (2002) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.The University of New South WalesSydneyAustralia
  2. 2.University of CaliforniaDavisUSA

Personalised recommendations