Application of Optimal Nonstationary Time Series Analysis to Water Quality Data and Pollutant Transport Modelling

  • Renata J. Romanowicz


Water quality and pollutant transport modelling play an important role in assessing the risk from pollution incidents. They are also important for the sustainable management of water resources. An ability to predict the concentrations of a pollutant travelling along the river is necessary in assessing the ecological impact of the pollutant and to plan a remedy against possible damage to humans and the environment. The risk from a pollutant at a given location along the river depends on the maximum concentration of any toxic component, the travel times of the pollutant from the release point and the duration over which its concentration exceeds feasible threshold levels. These tasks require modelling pollutant transport under varying flow conditions, i.e. unsteady flow. The aim is to outline on-going research on data-based models and to compare the results with physically-based approaches using worked case examples from pollutant transport modelling. In addition to steady-state examples, a Stochastic Transfer pollutant transport model in varying flow conditions is presented. A case study on water quality modelling has the form of a tutorial on the application of a multi-rate Stochastic Transfer Function to the identification of environmental processes.


Monte Carlo Water Quality Modelling Pollutant Transport Transfer Function Model Generalise Likelihood Uncertainty Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank my colleagues from GKSS, Germany, for further use of the data from the River Elbe (among others, Ulrich Callies and Wilhelm Petersen). My collaborators Marzena Osuch, Jaroslaw Napiorkowski and Pawel Rowinski (Institute of Geophysics, PAS, Poland) and Steve Wallis (Heriot Watt University, Edinburgh, UK) are thanked for their help in the River Narew and Murray Burn case studies.


  1. 1.
    Beer, T., Young, P.C.: Longitudinal dispersion in natural streams. J. Environ. Eng. 109(5), 1049–1067 (1983) CrossRefGoogle Scholar
  2. 2.
    Bencala, K.E., Walters, R.A.: Simulation of solute transport in a mountain pool-and riffle stream: a transient storage model. Water Resour. Res. 19, 718–724 (1983) CrossRefGoogle Scholar
  3. 3.
    Beven, K.J., Binley, A.: The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process. 6, 279–298 (1992) CrossRefGoogle Scholar
  4. 4.
    Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970) MATHGoogle Scholar
  5. 5.
    Callies, U., Scharfe, M., Blöcker, G., Romanowicz, R., Young, P.C.: Normalisation involving mechanistic models: benefits compared to purely statistical approaches. Technical report, SCA Project IST 1999-11313, Deliverable 7 (2002) Google Scholar
  6. 6.
    Deng, Z.-Q., de Lima, J., Singh, V.P.: Transport rate-based model for overland flow and solute transport: Parameter estimation and process simulation. J. Hydrol. 315, 220–235 (2005) CrossRefGoogle Scholar
  7. 7.
    Fischer, H.B.: The mechanisms of dispersion in natural systems. J. Hydraul. Div. 93, 187–216 (1967) Google Scholar
  8. 8.
    Harvey, J.W., Wagner, B.J.: Quantifying hydrologic interactions between streams and their sub-surface hyporheic zones. In: Streams and Ground Waters, pp. 200–221. Academic Press, San Diego (2000) Google Scholar
  9. 9.
    Jakeman, A.J., Hornberger, G.M.: How much complexity is needed in a rainfall-runoff model? Water Resour. Res. 29, 2637–2649 (1993) CrossRefGoogle Scholar
  10. 10.
    Lees, M.J., Camacho, L.A., Chapra, S.C.: On the relationship of transient-storage and aggregated dead zone models of longitudinal solute transport in streams. Water Resour. Res. 36, 213–224 (2000) CrossRefGoogle Scholar
  11. 11.
    Osuch, M.: Modelowanie przepływu i migracji wybranych zanieczyszczeń na odcinku Narwiańskiego Parku Narodowego. PhD thesis, Instytut Geofizyki Polskiej Akademii Nauk (2008) Google Scholar
  12. 12.
    Osuch, M., Romanowicz, R.J., Wallis, S.: Uncertainty in the relationship between flow and parameters in models of pollutant transport. Publ. Inst. Geophys., Pol. Acad. Sci. E-10(406), 127–138 (2008) Google Scholar
  13. 13.
    Pedregal, D.J., Taylor, C.J., Young, P.C.: System Identification, Time Series Analysis and Forecasting. The Captain Toolbox. Handbook v 1.1 July 2004. CRES, Lancaster University (2004) Google Scholar
  14. 14.
    Petersen-Overleir, A.: Accounting for heteroscedasticity in rating curve estimates. J. Hydrol. 292, 173–181 (2004) CrossRefGoogle Scholar
  15. 15.
    Piotrowski, A., Wallis, S.G., Napiórkowski, J.J., Rowinski, P.M.: Evaluation of 1-d tracer concentration profile in a small river by means of multi-layer perceptron neural networks. Hydrol. Earth Syst. Sci. 11, 1883–1896 (2007) CrossRefGoogle Scholar
  16. 16.
    Romanowicz, R.J., Osuch, M., Wallis, S.: Modelling of pollutant transport in rivers under unsteady flow. In: IAHR2010 Proceedings (2010) Google Scholar
  17. 17.
    Rowiński, P.M., Napiórkowski, J.J., Szkutnicki, J.: Transport of passive admixture in a multi-channel river system—the upper narew case study. Part 1. Hydrological survey. Ecol. Hydrobiol. 3, 371–379 (2003) Google Scholar
  18. 18.
    Runkel, R.L., Broshears, R.E.: One-dimensional transport with inflow and storage (otis): a solute transport model for small streams. Technical report, Boulder, Co., University of Colorado, CADSWES Technical Report 91-01, 85 p. (1991) Google Scholar
  19. 19.
    Rutherford, J.C.: River Mixing. Wiley, New York (1994) Google Scholar
  20. 20.
    Sincock, A.M., Wheater, H.S., Whitehead, P.G.: Calibration and sensitivity of a river water quality model un-der unsteady flow conditions. J. Hydrol. 277, 214–229 (2003) CrossRefGoogle Scholar
  21. 21.
    Smith, P., Beven, K., Tawn, J., Blazkova, S., Merta, L.: Discharge-dependent pollutant dispersion in rivers: estimation of aggregated dead zone parameters with surrogate data. Water Resour. Res. 42, W04412 (2006). doi: 10.1029/2005WR004008 CrossRefGoogle Scholar
  22. 22.
    Socolofski, R.P., Jirka, A.: Environmental fluid mechanics, engineering lectures. Technical report, Institut fur Hydromechanik, Universitat Karlsruhe, 76128-Karlsruhe, Germany (2002) Google Scholar
  23. 23.
    Sorooshian, S., Dracup, J.A.: Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: correlated and heteroscedastic cases. Water Resour. Res. 16(2), 430–442 (1980) CrossRefGoogle Scholar
  24. 24.
    Sukhodolov, A.N., Nikora, V.I., Rowinski, P.M., Czernuszenko, W.: A case study of longitudinal dispersion in small lowland rivers. Water Environ. Res. 69, 1246–1253 (1997) CrossRefGoogle Scholar
  25. 25.
    Tych, W., Pedregal, D.J., Young, P.C., Davies, J.: An unobserved component model for multi-rate forecasting of telephone call demand: the design of a forecasting support system. Int. J. Forecast. 18, 673–695 (2002) CrossRefGoogle Scholar
  26. 26.
    Vuksanovic, V., De Smedt, F., Van Meerbeeck, S.: Transport of polychlorinated biphenyls (pcb) in the scheldt estuary simulated with the water quality model wasp. J. Hydrol. 174, 1–10 (1996) CrossRefGoogle Scholar
  27. 27.
    Wallis, S., Manson, R.: Modelling solute transport in a small stream using discus. Acta Geophys. Pol. 53(4), 501–515 (2005) Google Scholar
  28. 28.
    Wallis, S.G., Guymer, I., Bilgi, A.: A practical engineering approach to modelling longitudinal dispersion. In: Proceedings of the International Conference on Hydraulics and Environmental Modelling of Coastal, Estuarine and River water. Gower Technical, Bradford (1989) Google Scholar
  29. 29.
    Whitehead, P., Young, P.C.: Water quality in river systems: Monte-Carlo analysis. Water Resour. Res. 15, 451–459 (1979) CrossRefGoogle Scholar
  30. 30.
    Whitehead, P., Young, P.C., Hornberger, G.: A system model of stream flow and water quality in the Bedford-Ouse river—1. stream flow modelling. Water Res. 13, 1115–1169 (1979) CrossRefGoogle Scholar
  31. 31.
    Young, P.C.: A general theory of modelling for badly defined dynamic systems. In: Modeling, Identification and Control in Environmental Systems, Amsterdam, pp. 103–135 (1978) Google Scholar
  32. 32.
    Young, P.C.: Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. Environ. Model. Softw. 13, 105–122 (1998) CrossRefGoogle Scholar
  33. 33.
    Young, P.C.: Data-based mechanistic modelling, generalised sensitivity and dominant mode analysis. Comput. Phys. Commun. 117, 113–129 (1999) CrossRefGoogle Scholar
  34. 34.
    Young, P.C., Minchin, P.E.H.: Environmental time series analysis. Int. J. Biol. Macromol. 13, 190–201 (1991) CrossRefGoogle Scholar
  35. 35.
    Young, P.C.: Recursive Estimation and Time-Series Analysis. Springer, Berlin (1984) MATHGoogle Scholar
  36. 36.
    Young, P.C., Lees, M.: The active mixing volume: a new concept on modelling environmental systems. In: Statistics for the Environment, pp. 3–44. Wiley, New York (1993) Google Scholar
  37. 37.
    Young, P.C., Pedregal, D.J., Tych, W.: Dynamic harmonic regression. J. Forecast. 18, 369–394 (1999) CrossRefGoogle Scholar
  38. 38.
    Young, P.C., Wallis, S.G.: Solute transport and dispersion in channels. In: Channel Network Hydrology, pp. 129–173. Willey, New York (1993) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Institute of GeophysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations