Skip to main content

Progress and Open Questions in the Identification of Electrically Stimulated Human Muscle for Stroke Rehabilitation

  • Chapter
  • 3145 Accesses

Abstract

Recent work involving the use of robots in stroke rehabilitation has developed model-based algorithms to control the application of functional electrical stimulation to the upper limb of stroke patients with incomplete paralysis to assist in reaching tasks. This, in turn, requires the identification of the response of a human muscle to electrical stimulation. In this chapter an overview of the progress reported in the literature is given together with some currently open research questions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Parker, V.M., Wade, D.T., Langton-Hewer, R.: Loss of arm function after stroke: measurement, frequency and recovery. Int. Rehabil. Med. 8(4), 69–73 (1986)

    Google Scholar 

  2. Broeks, J.G., Lankhorst, G.J., Rumping, K., Previo, A.J.: The long-term outcome of arm function after stroke: results of a follow-up study. Disabil. Rehabil. 21, 357–364 (1999)

    Article  Google Scholar 

  3. de Kroon, J.R., van der Lee, J.H., Ijzerman, M.J., Lankhorst, G.J.: Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin. Rehabil. 16(4), 350–360 (2002)

    Article  Google Scholar 

  4. De Kroon, J.R., Ijzerman, M.J., Chae, J.J., Lankhorst, G.J., Zilvold, G.: Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremety in stroke. J. Rehabil. Med. 37(2), 65–74 (2005)

    Article  Google Scholar 

  5. Pomeroy, V.M., King, L., Pollack, A., Baily-Hallon, A., Longhorne, P.: Electrostimulation for promoting recovery of movement or functional ability after stroke. The Cochrane Database of Systematic Reviews, Issue 2 (2006)

    Google Scholar 

  6. Burridge, J.H., Ladouceur, M.: Clinical and therapeutic applications of neuromuscular stimulation: a review of current use and speculation into future developments. Neuromodulation 4(4), 147–154 (2001)

    Article  Google Scholar 

  7. Rushton, D.N.: Functional electrical stimulation and rehabilitation—an hypothesis. Med. Eng. Phys. 25(1), 75–78 (2003)

    Article  Google Scholar 

  8. Le, F., Markovsky, I., Freeman, C.T., Rogers, E.: Identification of electrically stimulated muscle models of stroke patients. Control Eng. Pract. 18(4), 396–407 (2010)

    Article  Google Scholar 

  9. Thorsen, R., Spadone, R., Ferrarin, M.: A pilot study of myoelectrically controlled FES of upper extremity. IEEE Trans. Neural Syst. Rehabil. Eng. 9(2), 161–168 (2001)

    Article  Google Scholar 

  10. Baker, L.L., McNeal, D.R., Benton, L.A., Bowman, B.R., Waters, R.L.: NeuroMuscular Electrical Stimulation: A Practical Guide, 3rd edn. (1993)

    Google Scholar 

  11. Freeman, C.T., Hughes, A.-M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: Iterative learning control of FES applied to the upper extremity for rehabilitation. Control Eng. Pract. 17(3), 368–381 (2009)

    Article  Google Scholar 

  12. Freeman, C.T., Hughes, A.-M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: A robotic workstation for stroke rehabilitation of the upper extremity using FES. Med. Eng. Phys. 31(3), 364–373 (2009)

    Article  Google Scholar 

  13. Freeman, C.T., Hughes, A.-M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: A model of the upper extremity using surface FES for stroke rehabilitation. J. Biomed. Eng. 131(1), 031011 (2009)

    Google Scholar 

  14. Hughes, A.-M., Freeman, C.T., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Neurorehabil. Neural Repair 23(6), 559–568 (2009)

    Article  Google Scholar 

  15. Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operations of robots by learning. J. Robot. Syst. 1, 123–140 (1984)

    Article  Google Scholar 

  16. Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control. IEEE Control Syst. Mag. 26(3), 96–114 (2006)

    Article  Google Scholar 

  17. Ahn, H.-S., Chen, Y., Moore, K.L.: Iterative learning control: brief survey and categorization. IEEE Trans. Syst. Man Cybern. 37(6), 1109–1121 (2007)

    Google Scholar 

  18. Popovic, D., Popovic, M.: Tuning of a nonanalytical hierarchical control system for reaching with FES. IEEE Trans. Biomed. Eng. 45(2), 203–212 (1998)

    Article  Google Scholar 

  19. Crago, P.E., Nakai, R.J., Chizeck, H.J.: Feedback regulation of hand grasp opening and contact force during stimulation of paralysed muscle. IEEE Trans. Biomed. Eng. 38(1), 17–28 (1991)

    Article  Google Scholar 

  20. Chizeck, H.J., Lan, N., Palmieri, L.S., Crago, P.L.: Feedback control of electrically stimulated muscle using simultaneous pulse width and stimulus period modulation. IEEE Trans. Biomed. Eng. 38(12), 1224–1234 (1991)

    Article  Google Scholar 

  21. Watanabe, T., Iibuchi, K., Kurosawa, K., Hoshimiya, N.: A method of multichannel PID control of two-degree-of-freedom wrist joint movements by functional electrical stimulation. Syst. Comput. Jpn. 34(5), 319–328 (2003)

    Article  Google Scholar 

  22. Hatwell, M.S., Oderkerk, B.J., Sacher, C.A., Inbar, G.F.: Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans. Rehabil. Eng. 36(6), 683–691 (1991)

    MathSciNet  Google Scholar 

  23. Previdi, F., Schauer, T., Savaresi, S.M., Hunt, K.J.: Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach. IEEE Trans. Control Syst. Technol. 12(1), 176–182 (2004)

    Article  Google Scholar 

  24. Hill, A.V.: Then heat of shortening and the dynamic constants of a muscle. Proc. R. Soc. Lond. B, Biol. Sci. 126, 136–195 (1938)

    Article  Google Scholar 

  25. Lan, N.: Stability analysis for postural control in a two-joint limb system. IEEE Trans. Neural Syst. Rehabil. Eng. 10(4), 249–259 (2002)

    Article  MathSciNet  Google Scholar 

  26. Riener, R., Fuhr, T.: Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans. Rehabil. Eng. 6(2), 113–124 (1998)

    Article  Google Scholar 

  27. Jezernik, S., Wassink, R.G.V., Keller, T.: Sliding mode closed-loop control of FES: controlling the shank movement. IEEE Trans. Rehabil. Eng. 51(2), 263–272 (2004)

    Google Scholar 

  28. Schauer, T., Negard, N.O., Previdi, F., Hunt, K.J., Fraser, M.H., Ferchland, E., Raisch, J.: Online identification and nonlinear control of the electrically stimulated quadriceps muscle. Control Eng. Pract. 13(9), 1207–1219 (2005)

    Article  Google Scholar 

  29. Ferrarin, M., Palazzo, F., Riener, R., Quintern, J.: Model-based control of FES induced single joint movements. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 245–257 (2001)

    Article  Google Scholar 

  30. Hunt, K.J., Munih, M., Donaldson, N.N., Barr, F.M.D.: Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle. IEEE Trans. Rehabil. Eng. 45(8), 998–1009 (1998)

    Google Scholar 

  31. Reiner, R., Quintern, J.: A physiologically based model of muscle activation verified by electrical stimulation. Bioelectrochem. Bioenerg. 43, 257–264 (1997)

    Article  Google Scholar 

  32. Previdi, F., Carpanzano, E.: Design of a gain scheduling controller for knee-joint angle control by using functional electrical stimulation. IEEE Trans. Control Syst. Technol. 11(3), 310–324 (2003)

    Article  Google Scholar 

  33. Happee, R., Van der Helm, F.C.T.V.: The control of shoulder muscles during goal directed movements, an inverse dynamic analysis. J. Biomed. Eng. 28(10), 1179–1191 (1995)

    Google Scholar 

  34. Durfee, W.K., MacLean, K.E.: Methods for estimating isometric recruitment curves of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 36(7), 654–667 (1989)

    Article  Google Scholar 

  35. Baratta, R., Solomonow, M.: The dynamic response model of nine different skeletal muscles. IEEE Trans. Biomed. Eng. 37(3), 243–251 (1990)

    Article  Google Scholar 

  36. Veltink, P.H., Chizeck, H.J., Crago, P.E., El-Bialy, A.: Nonlinear joint angle control for artificially stimulate muscle. IEEE Trans. Biomed. Eng. 39(4), 368–380 (1992)

    Article  Google Scholar 

  37. Chizeck, H.J., Crago, P.E., Kofman, L.S.: Robust closed-Loop control of isometric muscle force using pulsewidth modulation. IEEE Trans. Biomed. Eng. 35(7), 510–517 (1988)

    Article  Google Scholar 

  38. Bernotas, L., Crago, P.E., Chizeck, H.J.: A discrete-time model of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 33(9), 829–838 (1986)

    Article  Google Scholar 

  39. Durfee, W.K., Palmer, K.L.: Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle. IEEE Trans. Biomed. Eng. 41(3), 205–216 (1994)

    Article  Google Scholar 

  40. Crago, P.E., Peckham, P.H., Thorpe, G.B.: Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans. Biomed. Eng. 27(12), 679–684 (1980)

    Article  Google Scholar 

  41. Ding, J., Wexler, A.S., Binder-MacLeod, S.A.: A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle Nerve 26(2), 477–485 (2002)

    Article  Google Scholar 

  42. Carroll, S.G., Triolo, R.J., Chizeck, H.J., Kobetic, R., Marsolias, E.B.: Tetanic responses of electrically stimulated paralyzed muscle at varying interpulse intervals. IEEE Trans. Biomed. Eng. 36(7), 644–653 (1989)

    Article  Google Scholar 

  43. Dempsey, E.J., Westwick, D.T.: Identification of Hammerstein models with cubic spline nonlinearities. IEEE Trans. Biomed. Eng. 51(2), 237–245 (2004)

    Article  Google Scholar 

  44. Marquardt, D.: An algorithm for least-squares estimation from linear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhu, Y.: Identification of Hammerstein models for control using ASYM. Int. J. Control 73(18), 1692–1702 (2000)

    Article  MATH  Google Scholar 

  46. Graham, G.M., Thrasher, T.A., Popovic, M.R.: The effect of random modulation of functional electrical stimulation parameters on muscle fatigue. IEEE Trans. Neural Syst. Rehabil. Eng. 14(1), 38–45 (2006)

    Article  Google Scholar 

  47. Le, F., Markovsky, I., Freeman, C.T., Rogers, E.: Identification of electrically stimulated muscle after stroke. In: Proc. European Control Conference, pp. 3208–3213 (2009)

    Google Scholar 

  48. Bako, L., Mercere, G., Lecoeuche, S., Lovera, M.: Recursive subspace identification of Hammerstein models based on least squares support vector machines. IET Proc. D 3(9), 1209–1216 (2009)

    MathSciNet  Google Scholar 

  49. Greblicki, W.: Stochastic approximation in nonparametric identification of Hammerstein systems. IEEE Trans. Autom. Control 47(11), 1800–1810 (2002)

    Article  MathSciNet  Google Scholar 

  50. Chen, H.F.: Pathwise convergence of recursive identification algorithms for Hammerstein systems. IEEE Trans. Autom. Control 49(4), 1641–1649 (2004)

    Article  Google Scholar 

  51. Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Chang, F.H.I., Luus, R.: A non-iterative method for identification using Hammerstein model. IEEE Trans. Autom. Control 16(5), 464–468 (1971)

    Article  Google Scholar 

  53. Zhao, W.X., Chen, H.F.: Adaptive tracking and recursive identification for Hammerstein systems. Automatica, 45(12), 2773–2783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Chia, T.L., Chow, P.C., Chizeck, H.J.: Recursive parameter identification of constrained systems: an application to electrically stimulated muscle. IEEE Trans. Biomed. Eng. 38(5), 429–442 (1991)

    Article  Google Scholar 

  55. Ponikvar, M., Munih, M.: Setup and procedure for online identification of electrically stimulated muscle With Matlab Simulink. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 295–301 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Le, F., Freeman, C.T., Markovsky, I., Rogers, E. (2012). Progress and Open Questions in the Identification of Electrically Stimulated Human Muscle for Stroke Rehabilitation. In: Wang, L., Garnier, H. (eds) System Identification, Environmental Modelling, and Control System Design. Springer, London. https://doi.org/10.1007/978-0-85729-974-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-974-1_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-973-4

  • Online ISBN: 978-0-85729-974-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics