On Application of State Dependent Parameter Models in Electrical Demand Forecast


Electrical demand forecast is critical to power system operation since it serves as an input to the management and planning of such systems, such as power production, transmission and distribution, dispatch and pricing process as well as system security analysis. From the system’s point of view, this is a complex nonlinear dynamic system in which the power demand is a highly nonlinear function of the historical data and various external variables. This chapter describes an application of a type of State Dependent Parameter (SDP) models, two-dimensional wavelet based SDP model (2-DWSDP) to the modeling and forecast of daily peak electrical demand in the state of Victoria, Australia. Using the proposed approach, the essentials of such a system’s dynamics can be effectively captured by a compact mathematical formulation. The parsimonious structure of the identified model enhances the model’s generalization capability, and provides very descriptive views and interpretations about the interactions and relationships between various components which affect the system’s behaviours.


Electrical Demand Peak Demand Daily Peak Nonlinear System Identification State Dependent Parameter 


  1. 1.
    Truong, N.V., Wang, L., Young, P.C.: Nonlinear system modeling using nonparametric identification and linear wavelet estimation of SDP models. In: Proc. 45th IEEE Conf. on Decision and Control, San Diego, USA, pp. 2523–2528 (2006) CrossRefGoogle Scholar
  2. 2.
    Truong, N.V., Wang, L., Young, P.C.: Nonlinear system modeling using nonparametric identification and linear wavelet estimation of SDP models. Int. J. Control 80(5), 774–788 (2007) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Truong, N.V., Wang, L., Huang, J.M.: Nonlinear modeling of a magnetic bearing using SDP model and linear wavelet parameterization. In: Proc. 2007 American Control Conference, New York, USA, pp. 2254–2259 (2007) CrossRefGoogle Scholar
  4. 4.
    Truong, N.V., Wang, L.: Nonlinear system identification using two dimensional wavelet based SDP models. Int. J. Syst. Sci. 40(11), 1161–1180 (2009) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Truong, N.V., Wang, L., Wong, K.C.: Modelling and short-term forecasting of daily peak power demand in Victoria using two-dimensional wavelet based SDP models. Int. J. Electr. Power Energy Syst. 30(9), 511–518 (2008) CrossRefGoogle Scholar
  6. 6.
    Young, P.C.: Stochastic, dynamic modelling and signal processing: time variable and state dependent parameter estimation. In: Fitzgerald, W.J., Walden, A., Smith, R., Young, P.C. (eds.) Nonlinear and Nonstationary Signal Processing, pp. 74–114. Cambridge University Press, Cambridge (2000) Google Scholar
  7. 7.
    Young, P.C.: The identification and estimation of nonlinear stochastic systems. In: Mees, A.I. (ed.) Nonlinear Dynamics and Statistics, pp. 127–166. Birkhäuser, Boston (2001a) Google Scholar
  8. 8.
    Young, P.C., McKenna, P., Bruun, J.: Identification of nonlinear stochastic systems by state dependent parameter estimation. Int. J. Control 74, 1837–1857 (2001) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ho, K.L.: Short-term load forecasting of Taiwan power system using a knowledge based expert system. IEEE Trans. Power Syst. 5(4), 1214–1219 (1990) CrossRefGoogle Scholar
  10. 10.
    Rahman, S., Hazim, O.: Load forecasting for multiple sites: development of an expert system based technique. Electr. Power Syst. Res. 39(3), 161–169 (1996) CrossRefGoogle Scholar
  11. 11.
    Huang, S., Shih, K.: Application of a fuzzy model for short-term load forecast with group method of data handling enhancement. Int. J. Electr. Power Energy Syst. 24, 631–638 (2002) CrossRefGoogle Scholar
  12. 12.
    Al-Kandari, A.M., Soliman, S.A., El-Hawary, M.E.: Fuzzy short-term electric forecasting. Int. J. Electr. Power Energy Syst. 26, 111–122 (2004) CrossRefGoogle Scholar
  13. 13.
    Senjyu, T., Mandal, P., Uezato, K., Funabashi, T.: Next day load curve forecasting using recurrent neural network structure. IEE Proc., Gener. Transm. Distrib. 151, 388–394 (2004) CrossRefGoogle Scholar
  14. 14.
    Beccali, M., Cellura, M., Lo Brano, V., Marvuglia, A.: Forecasting daily urban electric load profiles using artificial neural networks. Energy Convers. Manag. 45, 2879–2900 (2004) CrossRefGoogle Scholar
  15. 15.
    Baczynski, D., Parol, M.: Influence of artificial neural network structure on quality of short-term electric energy consumption forecast. IEE Proc., Gener. Transm. Distrib. 151, 241–245 (2004) CrossRefGoogle Scholar
  16. 16.
    Saini, L.M., Soni, M.K.: Artificial neural network based peak load forecasting using Levenberg-Marquardt and quasi-Newton methods. IEE Proc., Gener. Transm. Distrib. 149, 578–584 (2002) CrossRefGoogle Scholar
  17. 17.
    Kumluca, A., Erkmen, I.: A hybrid learning for neural networks applied to short term load forecasting. Neurocomputing 51, 495–500 (2003) CrossRefGoogle Scholar
  18. 18.
    Niebur, D.: Artificial Neural Networks in the power industry, survey and applications. Neural Netw. World 6, 945–950 (1995) Google Scholar
  19. 19.
    Desouky, A.A., Elkateb, M.M.: Hybrid adaptive techniques for electric-load forecast using ANN and ARIMA. IEE Proc., Gener. Transm. Distrib. 147, 213–217 (2000) CrossRefGoogle Scholar
  20. 20.
    Liang, R., Cheng, C.: Short-term forecasting by a neuro-fuzzy based approach. Int. J. Electr. Power Energy Syst. 24(2), 103–111 (2002) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gao, R., Tsoukalas, L.H.: Neural-wavelet methodology for load forecasting. J. Intell. Robot. Syst. 31, 149–157 (2001) MATHCrossRefGoogle Scholar
  22. 22.
    Kermanshashi, B., Iwamiya, H.: Up to year 2020 load forecasting using neural nets. Int. J. Electr. Power Energy Syst. 24, 789–797 (2002) CrossRefGoogle Scholar
  23. 23.
    Bunn, D.W., Farmer, E.D.: Comparative Models for Electrical Load Forecasting. Wiley, New York (1985) Google Scholar
  24. 24.
    Moghram, I., Rahman, S.: Analysis and Evaluation of five short-term load forecasting techniques. IEEE Trans. Power Syst. 4(4), 1484–1491 (1989) CrossRefGoogle Scholar
  25. 25.
    Bunn, D.W., Vassilopoulos, A.I.: Comparison of seasonal estimation methods in multi-item short-term forecasting. Int. J. Forecast. 15, 431–443 (1999) CrossRefGoogle Scholar
  26. 26.
    Al-Hamadi, H.M., Soliman, S.A.: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electr. Power Syst. Res. 68(1), 47–59 (2004) CrossRefGoogle Scholar
  27. 27.
    Taylor, J.W.: Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 54, 799–804 (2003) MATHCrossRefGoogle Scholar
  28. 28.
    Taylor, J.W., Buizza, R.: Using weather ensemble predictions in electricity demand forecasting. Int. J. Forecast. 19, 57–70 (2003) CrossRefGoogle Scholar
  29. 29.
    Asber, D., Lefebvre, S., Asber, J., Saad, M., Desbiens, C.: Non-parametric short-term load forecasting. Int. J. Electr. Power Energy Syst. 29, 630–635 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Institute of Applied Mechanics and InformaticsVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.School of Electrical and Computer EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations