Skip to main content

How Accurate Can Instrumental Variable Models Become?

  • Chapter

Abstract

This chapter presents and discusses various aspects of what theory predicts in terms of accuracy of instrumental variable estimates. A general derivation of the covariance matrix of the parameter estimates is presented. This matrix is influenced by a number of user choices in the identification method, and it is further discussed how these user choices can be made in order to make the covariance matrix as small as possible in a well-defined sense. The chapter includes also a comparison with the prediction error method, and a discussion of in what situations an optimal instrumental variable method can be statistically efficient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Box, G.E.P., Jenkins, G.W.: Time Series Analysis, Forecasting and Control, 2nd edn. Holden-Day, San Francisco (1976)

    MATH  Google Scholar 

  2. Friedlander, B.: The overdetermined recursive instrumental variable method. IEEE Trans. Autom. Control AC-29, 353–356 (1984)

    Article  Google Scholar 

  3. Gilson, M., Van den Hof, P.: Instrumental variable methods for closed-loop identification. Automatica 41(2), 241–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ljung, L.: System Identification—Theory for the User, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  5. Ljung, L., Söderström, T.: Theory and Practice of Recursive Identification. MIT Press, Cambridge (1983)

    MATH  Google Scholar 

  6. Mayne, D.Q.: A method for estimating discrete time transfer functions. In: Advances in Computer Control, Second UKAC Control Convention, Bristol, UK (1967)

    Google Scholar 

  7. Peterka, V., Halousková, Q.: Tally estimate of åström model for stochastic systems. In: Proc. 2nd IFAC Symposium on Identification and System Parameter Estimation, Prague, Chechoslovakia (1970)

    Google Scholar 

  8. Reiersøl, O.: Confluence analysis by means of lag moments and other methods of confluence analysis. Econometrica 9, 1–24 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  9. Söderström, T.: Errors-in-variables methods in system identification. Automatica 43(6), 939–958 (2007). Survey paper

    Article  MathSciNet  MATH  Google Scholar 

  10. Söderström, T., Hong, M.: Identification of dynamic errors-in-variables systems with periodic data. In: Proc. 16th IFAC World Congress, Prague, Czech Republic, July 4–8 (2005)

    Google Scholar 

  11. Söderström, T., Stoica, P.: Instrumental Variable Methods for System Identification. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  12. Söderström, T., Stoica, P.: System Identification. Prentice Hall International, Hemel Hempstead (1989)

    MATH  Google Scholar 

  13. Söderström, T., Stoica, P., Trulsson, E.: Instrumental variable methods for closed loop systems. In: 10th IFAC World Congress, Munich, Germany (1987)

    Google Scholar 

  14. Stoica, P., Friedlander, B., Söderström, T.: Instrumental variable methods for ARMA models. In: Leondes, C.T. (ed.) Control and Dynamic Systems—Advances in Theory and Applications. System Identification and Adaptive Control, vol. 25, pp. 79–150. Academic Press, New York (1987)

    Google Scholar 

  15. Stoica, P., Söderström, T.: Optimal instrumental variable estimation and approximate implementation. IEEE Trans. Autom. Control AC-28, 757–772 (1983)

    Article  Google Scholar 

  16. Stoica, P., Söderström, T., Friedlander, B.: Optimal instrumental variable estimates of the AR parameters of an ARMA process. IEEE Trans. Autom. Control AC-30, 1066–1074 (1985)

    Article  Google Scholar 

  17. Söderström, T., Stoica, P., Friedlander, B.: An indirect prediction error method. Automatica 27, 183–188 (1991)

    Article  MATH  Google Scholar 

  18. Thil, S., Hong, M., Söderström, T., Gilson, M., Garnier, H.: Statistical analysis of a third-order cumulants based algorithm for discrete errors-in-variables identification. In: IFAC 17th World Congress Seoul, Korea, July 6–11 (2008)

    Google Scholar 

  19. Van Huffel, S., Vandewalle, J.: Comparison of total least squares and instrumental variable methods for parameter estimation of transfer function models. Int. J. Control 50, 1039–1056 (1989)

    Article  MATH  Google Scholar 

  20. Wong, K.Y., Polak, E.: Identification of linear discrete time systems using the instrumental variable approach. IEEE Trans. Autom. Control 12, 707–718 (1967)

    Article  Google Scholar 

  21. Young, P.C.: An instrumental variable method for real-time identification of a noisy process. Automatica 6, 271–287 (1970)

    Article  Google Scholar 

  22. Young, P.C., Jakeman, A.J.: Refined instrumental variable methods of time series analysis: Part III extensions. Int. J. Control 31, 741–764 (1980)

    Article  MATH  Google Scholar 

  23. Young, P.C.: Parameter estimation for continuous-time models—a survey. Automatica 17, 23–29 (1981)

    Article  MATH  Google Scholar 

  24. Young, P.C.: Recursive Estimation and Time-Series Analysis. Springer, Berlin (1984)

    MATH  Google Scholar 

  25. Young, P.C., Jakeman, A.J.: Refined instrumental variable methods of recursive time-series analysis. Part I: Single input, single output systems. Int. J. Control 29, 1–30 (1979)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Söderström .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Peter Young on the occasion of his 70th anniversary, with thanks for many years of discussions on the instrumental variable method.

Appendix: Proofs and Derivations

Appendix: Proofs and Derivations

1.1 A.1 Proof of Lemma 1.1

Using the assumption on joint Gaussian distribution we can apply the general rule for product of Gaussian variables

$$\mathsf {E}\{ x_1 x_2 x_3 x_4 \}=\mathsf {E}\{ x_1 x_2 \} \mathsf {E}\{ x_3 x_4 \}+ \mathsf {E}\{ x_1 x_3 \} \mathsf {E}\{x_2 x_4 \}+ \mathsf {E}\{ x_1 x_4 \} \mathsf {E}\{ x_2 x_3 \}. $$
(1.82)

Using the result (1.82) in (1.34) leads to

(1.83)

Recall that the covariance function r v (τ) decays exponentially with τ. Therefore we can write

$$\Biggl\|\lim_{N \rightarrow\infty}\frac{1}{N}\sum_{\tau=-N}^N| \tau| R_{z}(\tau) r_v(\tau) \Biggr\|\le \lim_{N \rightarrow\infty}\frac{1}{N}\sum_{\tau=0}^N2 \tau C \alpha^{\tau} = 0 $$
(1.84)

for some |α|<1. Using this result, we get

$$S =\sum_{\tau= -\infty}^{\infty}\bigl[ R_{z}(\tau) r_v(\tau) +r_{z v}(\tau) r_{z v}^T(-\tau)\bigr]. $$
(1.85)

Now use the conventions

$$h_0 = 1,\qquad h_i = 0\quad\mbox{for } i < 0 $$
(1.86)

The assumption (1.36) now implies that

$$r_{z v}(\tau) r_{z v}^T(-\tau) = 0\quad\forall\tau $$
(1.87)

as at least one of the factors is zero. Therefore

(1.88)

which is (1.37).

1.2 A.2 Proof of Lemma 1.2

Using the definitions, one find that an arbitrary element of the matrix S is given by

(1.89)

To proceed we need to evaluate the expectation of products of the white noise sequence. Set m e =E{e 4(t)}. As e(t) has zero mean, the expected value of a product of four factors of the noise is nonzero if either the time arguments are pairwise equal, or all are equal. This principle gives

(1.90)

Inserting this into (1.89) leads to

(1.91)

Comparing the calculations in the proof of Lemma 1.3.1, we find that the first term in (1.91) is precisely

$$T_1 =\mathsf {E}\bigl\{ [ H(q^{-1})z(t) ][ H(q^{-1})z(t) ]^T \bigr\}. $$
(1.92)

Further, the second term turns out to be

$$T_2 =\sum_{\tau= - \infty} ^{\infty}r_{z v} (\tau) r_{zv}^T (-\tau) $$
(1.93)

which vanishes due to the assumption (1.44).

The last term can be written as

(1.94)

However, we know that

(1.95)

This implies that

$$T_3 = 0 $$
(1.96)

and the lemma is proven.

1.3 A.3 Proof of Lemma 1.3

We first write from (1.47)

$$P(S^{-1}) = \lambda^2 \bigl( R^T S^{-1} R \bigr)^{-1}. $$
(1.97)

The inequality (1.54) can equivalently be written as

$$\lambda^2 \bigl( R^T Q R \bigr)^{-1}R^T Q S Q R\bigl( R^T Q R \bigr)^{-1}\ge \lambda^2 \bigl( R^T S^{-1} R \bigr)^{-1} $$
(1.98)

which can be rewritten as

$$\bigl( R^T Q R \bigr)\bigl( R^T Q S Q R \bigr)^{-1}\bigl( R^T Q R \bigr)\le R^T S^{-1} R. $$
(1.99)

This in turn follows from the theory of partitioned matrices, cf. Lemma A.3 of [12], as

$$\left(\arraycolsep=5pt\begin{array}{@{}cc@{}}R^T S R & R^T Q R\\R^T Q R & R^T S Q Q R\end{array}\right)=\left(\begin{array}{c}R^T S^{-1} \\ R^T Q\end{array}\right)S\left(\begin{array}{cc}S^{-1} R & Q R\end{array}\right)\ge0. $$
(1.100)

1.4 A.4 Proof of Lemma 1.4

Using the theory of partitioned matrices, see for example Lemma A.2 in [12] and (1.56)

(1.101)

Equality in (1.101) applies if and only if

$$-S_{21} S^{-1} R + \tilde{R} = 0. $$
(1.102)

The condition (1.59) is equivalent to

$$R = S \alpha,\qquad \tilde{R} = S_{21} \alpha $$
(1.103)

for some matrix α. As S is nonsingular, this is in turn equivalent to α=S −1 R, and

$$\tilde{R} = S_{21} S^{-1} R $$
(1.104)

which is (1.102).

1.5 A.5 Answer to Exercise 1.3

Use the notation

$$r_k = \mathsf {E}\left\{ y(t+k) y(t) \right\}= \frac{\lambda^2}{1-a^2} (-a)^{|k|}. $$
(1.105)

Then

(1.106)
(1.107)
(1.108)

1.6 A.6 Proof of Lemma 1.5

Using the definition (1.50) of K(z) introduce the notations

(1.109)
(1.110)

Then it holds

(1.111)

Using (1.48) leads to

$$\lambda^2 R^T Q S Q R=\mathsf {E}\bigl\{ \alpha(t) \alpha^T (t) \bigr\}. $$
(1.112)

The stated inequality (1.62) then reads

(1.113)

Now, (1.113) is equivalent to

$$\bigl( \mathsf {E}\bigl\{ \beta(t) \alpha^T(t) \bigr\} \bigr)\bigl( \mathsf {E}\bigl\{ \alpha(t) \alpha^T(t) \bigr\} \bigr)^{-1}\bigl( \mathsf {E}\bigl\{ \alpha(t) \beta^T(t) \bigr\} \bigr)\le \bigl( \mathsf {E}\bigl\{ \beta(t) \beta^T(t) \bigr\} \bigr), $$
(1.114)

which follows from the theory of partitioned matrices, cf. Lemma A.4 in [12], as

$$\mathsf {E}\left\{\left(\arraycolsep=5pt\begin{array}{@{}cc@{}}\beta(t) \beta^T(t) & \beta(t) \alpha^T(t)\\ \alpha(t) \beta^T(y) & \alpha(t) \alpha^T(t)\end{array}\right) \right\}=\mathsf {E}\left\{\left(\begin{array}{c} \beta(t) \\ \alpha(t)\end{array}\right)\left(\begin{array}{c@{\ }c} \beta^T(t) & \alpha^T (t)\end{array}\right)\right\}\ge0. $$
(1.115)

Further, we see that with the specific choice

$$z(t) = H^{-1}(q^{-1}) \varphi_0(t),\qquad F(q^{-1}) = H^{-1}(q^{-1}),\qquad Q = I $$
(1.116)

it holds that

$$R = \mathsf {E}\bigl\{[ H^{-1}(q^{-1}) \varphi_0(t) ][ H^{-1}(q^{-1}) \varphi_0^T(t) ]\bigr\}=\mathsf {E}\bigl\{ \beta(t) \beta^T(t) \bigr\}= S $$
(1.117)

from which the equality in (1.62) follows.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Söderström, T. (2012). How Accurate Can Instrumental Variable Models Become?. In: Wang, L., Garnier, H. (eds) System Identification, Environmental Modelling, and Control System Design. Springer, London. https://doi.org/10.1007/978-0-85729-974-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-974-1_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-973-4

  • Online ISBN: 978-0-85729-974-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics