Extensions of Scene Flow

  • Andreas Wedel
  • Daniel Cremers


Most hazards in traffic situations include other moving traffic participants. Hence, reliably detecting motion in world coordinates is a crucial step for many driver assistance systems and an important part of machine visual kinesthesia. In this chapter we present two extensions of scene flow, making it further amenable to practical challenges of driver assistance. Firstly, we present a framework for scene-flow-based moving object detection and segmentation. Secondly, we discuss the application of Kalman filters for propagating scene flow estimation over time.


Kalman Filter Optical Flow Camera Motion Flow Vector Motion Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 10.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004) CrossRefGoogle Scholar
  2. 14.
    Brox, T., Rosenhahn, B., Cremers, D., Seidel, H.-P.: High accuracy optical flow serves 3-D pose tracking: exploiting contour and flow based constraints. In: Proc. European Conference on Computer Vision, Graz, Austria, pp. 98–111 (2006) Google Scholar
  3. 29.
    Cremers, D., Soatto, S.: Motion competition: a variational framework for piecewise parametric motion segmentation. Int. J. Comput. Vis. 62(3), 249–265 (2005) CrossRefGoogle Scholar
  4. 45.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(D), 35–45 (1960) Google Scholar
  5. 48.
    Klappstein, J.: Optical-flow based detection of moving objects in traffic scenes. Ph.D. thesis, University of Heidelberg, Heidelberg, Germany (2008) Google Scholar
  6. 49.
    Klappstein, J., Stein, F., Franke, U.: Monocular motion detection using spatial constraints in a unified manner. In: Proc. IEEE Intelligent Vehicles Symposium, Tokyo, Japan, pp. 261–267 (2006) CrossRefGoogle Scholar
  7. 50.
    Klappstein, J., Stein, F., Franke, U.: Applying Kalman filtering to road homography estimation. In: Workshop on Planning, Perception and Navigation for Intelligent Vehicles in Conjunction with IEEE International Conference on Robotics and Automation (ICRA), Rome, Italy, April 2007 Google Scholar
  8. 51.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? In: Proc. European Conference on Computer Vision, Copenhagen, Denmark, pp. 65–81 (2002) Google Scholar
  9. 52.
    Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmentation of binocular stereo video. In: Proc. International Conference on Computer Vision and Pattern Recognition, pp. 1186–1192 (2005) Google Scholar
  10. 54.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of the 7th International Joint Conference on Artificial Intelligence (IJCAI), Vancouver, British Columbia, Canada, pp. 674–679 (1981) Google Scholar
  11. 74.
    Rabe, C., Franke, U., Gehrig, S.: Fast detection of moving objects in complex scenarios. In: Proc. IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, pp. 398–403 (2007) CrossRefGoogle Scholar
  12. 75.
    Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate motion field estimation from stereo image sequences in real-time. In: Proc. European Conference on Computer Vision, pp. 582–595. Springer, Berlin (2010) Google Scholar
  13. 89.
    Sun, J., Zhang, W., Tang, X., Shum, H.: Background cut. In: Proc. European Conference on Computer Vision, Graz, Austria, pp. 628–641 (2006) Google Scholar
  14. 99.
    Vaudrey, T., Gruber, D., Wedel, A., Klappstein, J.: Space-time multi-resolution banded graph-cut for fast segmentation. In: Pattern Recognition (Proc. DAGM), Munich, Germany, pp. 203–213 (2008) CrossRefGoogle Scholar
  15. 101.
    Vaudrey, T., Wedel, A., Rabe, C., Klappstein, J., Klette, R.: Evaluation of moving object segmentation comparing 6D-Vision and monocular motion constraints. In: Online-Proc. Image and Vision Computing New Zealand, Christchurch, New Zealand, November 2008 Google Scholar
  16. 104.
    Vidal, R., Sastry, S.: Optimal segmentation of dynamic scenes from two perspective views. In: Proc. International Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, vol. 2, pp. 281–285 (2003) Google Scholar
  17. 111.
    Wedel, A., Rabe, C., Meissner, A., Franke, U., Cremers, D.: Detection and segmentation of independently moving objects from dense scene flow. In: Proc. International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, Bonn, Germany, August 2009 Google Scholar
  18. 122.
    Zhang, G., Jia, J., Xiong, W., Wong, T.T., Heng, P.A., Bao, H.: Moving object extraction with a hand-held camera. In: Online-Proc. International Conference on Computer Vision, Rio de Janeiro, Brazil, October 2006 Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Group ResearchDaimler AGSindelfingenGermany
  2. 2.Department of Computer ScienceTechnical University of MunichGarchingGermany

Personalised recommendations