Skip to main content

Medical Knowledge Databases

  • Chapter
  • First Online:
Computer Medical Databases

Part of the book series: Health Informatics ((HI))

  • 1045 Accesses

Abstract

Medical knowledge databases are collections of information about specific medical problems, and they are primarily designed to help clinicians make appropriate decisions in the diagnosis and treatment of their patients. Knowledge discovery is the process of automatically searching knowledge bases and other large computer databases for potentially useful or previously unknown information by using techniques from statistics and information science. Gabrieli (1978) estimated that a total and comprehensive medical-knowledge database required by a physician for the practice of the specialty of internal medicine might consist of about 210 distinct facts, compounded with patterns and probabilistic semantic relationships; and when treating a patient would need to include data gathered in the collection of the patient’s past and present medical history; the data that originated in the physician’s memory of related knowledge and experience; and the physician’s decision as to of probable diagnoses and treatments related to the patient’s problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal R, Srikant R. Fast algorithms for mining association rules. Proc 20th Internatnl Conf on Very Large Databases. 1994:487–99.

    Google Scholar 

  • Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. Proc ACM SIGMOD Internatnl Conf on Management of Data. 1993a:207–16.

    Google Scholar 

  • Agrawal R, Imelienski T, Swami A. Database mining: a performance perspective. IEEE Trans Knowledge Data Eng. 1993b;5:914–25.

    Article  Google Scholar 

  • Agrawal R, Mehta M, Shafer J, et al. The quest data mining system. Proc Internatnl Conf Data Mining and Knowledge Discovery. 1996:244–9.

    Google Scholar 

  • Baskin AB, Levy AH. MEDIKAS – an interactive knowledge acquisition system. Proc SCAMC. 1978:344–50.

    Google Scholar 

  • Bayes T. An essay towards solving a problem in the doctrine of chances. MD Comput. 1991;8:157–71 (copied from Philosophical Trans Royal Soc London 1763).

    PubMed  CAS  Google Scholar 

  • Berman L, Cullen M, Miller P. Automated integration of external databases: a knowledge-based approach to enhancing the rule-based expert systems. Comput Biomed Res. 1993;26:230–41.

    Article  PubMed  CAS  Google Scholar 

  • Benoit G, Andrews JE. Data discretization for novel resource discovery in large medical data sets. Proc AMIA Symp. 2000:61–5.

    Google Scholar 

  • Berndt DJ, Hevner AR, Studnicki J. CATCH/IT: a data warehouse to support comp community health. Proc AMIA Symp. 1998:250–4.

    Google Scholar 

  • Bernstein LM, Siegel ER, Goldstein CM. The hepatitis knowledge base. Ann Intern Med. 1980;93(Supp 1):165–222.

    Google Scholar 

  • Bleich HL. Computer evaluation of acid-base disorders. J Clin Invest. 1969;48:1689–996.

    Article  PubMed  CAS  Google Scholar 

  • Blum RL. Automating the study of clinical hypotheses on a time-oriented database: the RX project. Proc MEDINFO. 1980:456–60.

    Google Scholar 

  • Blum RL. Automated induction of causal relationships from a time-oriented clinical database. Proc AMIA. 1982a:307–11.

    Google Scholar 

  • Blum RL. Discovery and representation of causal relationships from a large time-oriented clinical database: the RX project. Chap 2: the time-oriented database. In: Lindberg DAB, Reichertz PL, Lindberg DAB, Reichertz PL, editors. Lecture notes in medical informatics. New York: Springer; 1982b. p. 38–57.

    Google Scholar 

  • Blum RL. Discovery, confirmation, and incorporation of causal relationships from a large time-oriented clinical database: the RX project. Comput Biomed Res. 1982c;15:164–87.

    Google Scholar 

  • Blum RL. Machine representation of clinical causal relationships. Proc MEDINFO. 1983:652–6.

    Google Scholar 

  • Blum RL, Wiederhold G. Inferring knowledge from clinical data banks utilizing techniques from artificial intelligence. Proc SCAMC. 1978:303–7.

    Google Scholar 

  • Blum RL, Wiederhold GCM. Studying hypotheses on a time-oriented clinical database: an overview of the RX project. Proc SCAMC. 1982:712–5.

    Google Scholar 

  • Bohren BF, Hadzikadic M, Hanley EN. Extracting knowledge from large databases: an automated approach. Comput Biomed Res. 1995;28:191–210.

    Article  PubMed  CAS  Google Scholar 

  • Brossette SE, Sprague AP, Jones WT, Moser SA. A data mining system for infection control surveillance. Methods Inform Med. 2000;39:303–10.

    CAS  Google Scholar 

  • Clayton PD, Haug PJ, Pryor TA, Wigertz OB. Representing a medical knowledge base for multiple uses. Proc AAMSI. 1987:289–93.

    Google Scholar 

  • Codd EF. A relational model of data for large shared data banks. Commun ACM. 1970;13:377–87.

    Article  Google Scholar 

  • Codd EF, Codd SB, Salley CT. Providing OLAP (On-line analytical processing) to user-analysts: an IT Mandate. San Jose: Codd & Date Inc; 1993.

    Google Scholar 

  • Connolly TM, Begg CE. Database management systems: a practical approach to design, implementation, and management. 2nd ed. New York: Addison-Wesley; 1999.

    Google Scholar 

  • Cooper LG, Giufridda G. Turning data mining into a management tool: new algorithms and empirical results. Manag Sci. 2000;46:249–64.

    Article  Google Scholar 

  • Doszkocs TE, Rapp BA, Schoolman HM. Automated information retrieval in science and technology. Science. 1980;208:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Downs SM, Wallace MY. Mining association rules from a pediatric primary care decision support system. Proc AMIA. 2000:200–4.

    Google Scholar 

  • Evans S, Lemon SJ, Deters CA, et al. Automated detection of hereditary syndromes using data mining. Comput Biomed Res. 1997a;30:337–48.

    Article  PubMed  CAS  Google Scholar 

  • Evans S, Lemon SJ, Deters CA, et al. Using data mining to characterize DNA mutations by patient clinical features. Proc AMIA. 1997b:253–7.

    Google Scholar 

  • Fayyad UM, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases. AI Mag. 1996;17:37–54.

    Google Scholar 

  • Fox MA. Linguistic implications of context dependency in ACIS. Proc MEDINFO. 1980:1285–9.

    Google Scholar 

  • Frawley WJ, Piatetsky-Shapito G, Matheus CJ. Knowledge discovery in databases: an overview. AI Mag. 1992;13:57–70.

    Google Scholar 

  • Gabrieli ER. Knowledge base structures in a medical information system. Proc 8th Ann Conf Soc Comp Med. 1978:1.2.9–11.

    Google Scholar 

  • Hand DJ. Data mining statistics and more. Am Stat. 1998;52:112–8.

    Google Scholar 

  • Hand DJ, Blunt G, Kelly MG, Adams NM. Data mining for fun and profit. Stat Sci. 2000;15:111–31.

    Article  Google Scholar 

  • Haughton D, Deichmann J, Eshghi A, et al. A review of software packages for data mining. Am Stat. 2003;57:290–309.

    Article  Google Scholar 

  • Holmes JH, Durbin DR, Winston FK. Discovery of predictive models in an injury surveillance database: an application of data mining in clinical research. Proc AMIA Symp. 2000:359–63.

    Google Scholar 

  • Johnson SB. Extended SQL for manipulating clinical warehouse data. Proc AMIA Symp. 1999:819–23.

    Google Scholar 

  • Ledley RS, Lusted LB. Reasoning foundations of medical diagnosis. Science. 1959;130:9–21.

    Article  PubMed  CAS  Google Scholar 

  • Lee IN, Liao SC, Embrechts M. Data mining techniques applied to medical information. Med Inform Internet Med. 2000;25:81–102.

    Article  PubMed  CAS  Google Scholar 

  • Lindberg DAB, Van Pelnan HJ, Couch RD. Patterns in clinical chemistry. Am J Clin Pathol. 1965;44:315–21.

    PubMed  CAS  Google Scholar 

  • Lindberg DAB, Takasugi S, DeLand EC. Analysis of blood chemical components distribution based on thermodynamic principle. Proc MEDIS ’78, Osaka; 1978. p. 109–12.

    Google Scholar 

  • Lindberg DAB, Gaston LW, Kingsland LC, et al. A knowledge-based system for consultation about blood coagulation studies. In: Gabriele TG, editor. The human side of computers in medicine. Proc Soc for Computer Med; 10th Annual Conf., San Diego; 1980. p. 5.

    Google Scholar 

  • Ludwig DW. INFERNET – a computer-based system for modeling medical knowledge and clinical inference. Proc SCAMC. 1981:243–9.

    Google Scholar 

  • Nigrin DJ, Kohane IS. Data mining by clinicians. Proc AMIA Symp. 1998:957–61.

    Google Scholar 

  • Nigrin DJ, Kohane IS. Scaling a data retrieval and mining application to the enterprise-wide level. Proc AMIA. 1999:901–5.

    Google Scholar 

  • Nigrin DJ, Kohane IS. Temporal expressiveness in querying a time-stamp-based clinical database. J Am Med Inform Assoc. 2000;7:152–63.

    Article  PubMed  CAS  Google Scholar 

  • Prather JC, Lobach DF, Goodwin LK, et al. Medical data mining: knowledge discovery in a clinical data warehouse. Proc AMIA Symp. 1997:101–5.

    Google Scholar 

  • Shafer SL, Shafer A, Foxlee RH, Prust R. Aesculapius: the implementation of a knowledge base on a microcomputer. Proc MEDCOMP IEEE. 1982:413–9.

    Google Scholar 

  • Srinivasan P, Rindflesch T. Exploring text mining from MEDLINE. Proc AMIA. 2002:722–6.

    Google Scholar 

  • Starmer CF. Feedback stabilization of control policy selection in data/knowledge based systems. Proc SCAMC. 1984:586–91.

    Google Scholar 

  • Sterling T, Gleser M, Haberman S, Pollack S. Robot data screening: a solution to multivariate type problems in the biological and social sciences. Commun ACM. 1966;9:529–32.

    Article  Google Scholar 

  • Szarfman A, Machado SG, O’Neil RT. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s Spontaneous Reports Database. Drug Safety 2002:25:381–392.

    Article  Google Scholar 

  • Tenabe L, Scherf U, Smith LH, et al. MedMiner: an internet text-mining tool for biomedical information, with applications to gene expression profiling. Biotechniques. 1999;6:1210–4.

    Google Scholar 

  • Wiederhold GC, Walker MG, Blum RL et al. Acquisition of medical knowledge from medical records. Proc Benutzergruppenseminar Med Sys; Munich; 1987. p. 8213–21.

    Google Scholar 

  • Wilcox A, Hripcsak G. Knowledge discovery and data mining to assist natural language understanding. Proc AMIA. 1998:76–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Collen, M.F. (2012). Medical Knowledge Databases. In: Computer Medical Databases. Health Informatics. Springer, London. https://doi.org/10.1007/978-0-85729-962-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-962-8_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-961-1

  • Online ISBN: 978-0-85729-962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics