Skip to main content

Specialized Medical Databases

  • Chapter
  • First Online:
Computer Medical Databases

Part of the book series: Health Informatics ((HI))

  • 1052 Accesses

Abstract

In the 1960s the high costs for the storage of data in computers, limited many of the earliest medical databases to relatively small collections of patients’ data. A file of patient (or case) identifiers, with a limited amount of clinical and demographic data was usually called a “register”; and the organizational structure that maintained it was called a “registry” (Laszlo et al. 1985; Laszlo 1985). Drolet and Johnson (2008) reviewed the literature related to registers and registries; and noted that the two terms, registries and registers, were often used interchangeably. Registries were often initiated for the follow-up care of patients, for tracking patients with specific diseases of clinical interest, for monitoring trends in the incidence of a disease, or for assessing the use of specific medical procedures (Garfolo and Keltner 1983). Clinical registries typically included selected and limited data, collected from one or more medical institutions or from within a defined geographic region; for patients who had a specific disease and/or had been treated with a specific therapy or medical technology in order to evaluate patient outcomes and/or assess the cost-effectiveness of a medical technology. Health services registries were initiated to monitor trends in the use and costs of health care services, such as the rates of hospitalizations and/or office visits. Epidemiology registries were established to follow patients with specific diseases in order to monitor trends in the prevalence and incidence rates of the diseases. Registries often became indistinguishable from databases as they accumulated more data; and as more powerful computers with cheaper and larger storage capacities became available; registries were then generally referred to as databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alterescu S, Friedman CA, Margolis S, Ritchey MG. AIDS case registry system. Proc SSCAMC. 1983:418–20.

    Google Scholar 

  • Ames JE, Strawn JE. National database for the procurement and transplantation of kidneys. Proc SCAMC. 1987:743–6.

    Google Scholar 

  • Ames JE, Strawn JE, Vaughn WK. National database for the procurement and transplantation of non-renal organs. Proc SCAMC. 1988:508–11.

    Google Scholar 

  • Banks G, Caplan LR, Hier DB. The Michael Reese stroke registry, a microcomputer-implemented data base. Proc SCAMC. 1983:724–7.

    Google Scholar 

  • Bean LL, May DL, Skolnick M. The Mormon historical demography project. Hist Methods. 1978;11:45–53.

    Article  PubMed  CAS  Google Scholar 

  • Beaty TH, Khoury MJ. Interface of genetics and epidemiology. Epidemiol Rev. 2000;22:120–5.

    Article  PubMed  CAS  Google Scholar 

  • Block JB, Isacoff WH. Adjuvant therapy in cancer. Cancer Res. 1977;37:939–42.

    Google Scholar 

  • Blum BI, Lenhard RE, Braine H, Kammer A. A clinical information display system. Proc SCAMC. 1977:131–8.

    Google Scholar 

  • Bokuski M. Correlating gene linkage maps with physical maps of chromosomes. National Library of Medicine News. 1989 (June–July):6.

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–31.

    PubMed  CAS  Google Scholar 

  • Boyd DR, Lowe RJ, Nyhus BRJ, Nyhus LM. Trauma registry: new computer method for multifactorial evaluation of a major health problem. JAMA. 1973;223:422–8.

    Article  PubMed  CAS  Google Scholar 

  • Breslow L. Incidence of cancer in Alameda county, California, 1960–1964. Berkeley: California State Deparment of Health; 1967.

    Google Scholar 

  • Bruce RA, Gey GO, Cooper MN, et al. Seattle heart watch: initial clinical, circulatory and electrocardiographic responses to maximal exercise. Am J Cardiol. 1974;33:459–69.

    Article  PubMed  CAS  Google Scholar 

  • Bruce RA, Hossack KF, Belanger L, et al. A computer terminal program to evaluate cardiovascular functional limits and estimate coronary event risks. West J Med. 1981;135:342–50.

    PubMed  CAS  Google Scholar 

  • Buhle EL, Goldwein JW, Benjamin I. OncoLink: a multimedia oncology information resource on the internet. Proc AMIA. 1994:103–7.

    Google Scholar 

  • Buyse ML. Computer-based information retrieval and decision support for birth defects and genetic disorders. Pediatrics. 1984;74:557–8.

    PubMed  CAS  Google Scholar 

  • Byrd BF. Cancer program manual: commission on cancer, American College of Surgeons. 1974a: 1–19.

    Google Scholar 

  • Byrd BF. Cancer registry manual: commission on cancer, American College of Surgeons. 1974b:1–63.

    Google Scholar 

  • Cabral RM, Cheng W. An integrated database system for managing medical information: a tumor registry application. Proc SCAMC. 1978:298–302.

    Google Scholar 

  • Califf RM, Hlatky MA, Mark DB, et al. Randomized trials of coronary artery by pass surgery: impact on clinical practice at Duke University Medical Center. Circulation. 1985;72(suppl V):136–44.

    Google Scholar 

  • Castle CH. Systems for collection and analysis of clinical data on patients with acute myocardial infarction. Proceedings of the Conference Workshop on Regional Med Programs. Washington, DC: NIH, USHEW, 1968:108–10.

    Google Scholar 

  • Chaitman BR, Bourassa MG, Davis K, et al. Angiographic prevalence of high-risk coronary artery disease in patient subsets (CASS). Circulation. 1981;64:360–7.

    Article  PubMed  CAS  Google Scholar 

  • Chik L, Sokol J, Kooi R, et al. A perinatal database management system. Methods Inform Med. 1981;20:133–41.

    CAS  Google Scholar 

  • Chung CS. Genetic analysis of human family and population data with use of digital computers. Proceedings of the 3rd IBM Med Symposium. Endicott: IBM, 1961:53–69.

    Google Scholar 

  • Clapp-Channing NE, Bobula JA. Microcomputer-based management of a longitudinal geriatric research study. Proc SCAMC. 1984:348–51.

    Google Scholar 

  • Clark DE. Development of a statewide trauma registry using multiple linked sources of data. Proc AMIA. 1994:654–8.

    Google Scholar 

  • Coffman GA, Mezzich JE. Research use of a general psychiatric database. Proc SCAMC. 1983:721–3.

    Google Scholar 

  • Collen MF. Computers in preventive health services research. 7th IBM Medical Symposium. Poughkeepsie: IBM, Oct 27, 1965.

    Google Scholar 

  • Collen MF. Periodic health examinations using an automated multitest laboratory. JAMA. 1966;195:830–3.

    Article  PubMed  CAS  Google Scholar 

  • Collen MF. The multitest laboratory in health care of the future. Hospitals. 1967;41:119–25.

    PubMed  CAS  Google Scholar 

  • Collen MF, editor. Multiphasic health testing services. New York: Wiley; 1978.

    Google Scholar 

  • Collins FS. Identification of disease genes: recent successes. Hosp Pract. 1991;26:93–8.

    CAS  Google Scholar 

  • Cooper GF, Hennings-Yeomans P, Visweswaran S, et al. An efficient Bayesian method for predicting clinical outcomes from genome-wide data. Proc AMIA. 2010: 127–31.

    Google Scholar 

  • Corvin A, Craddock N, Sullivan PF. Genome-wide association, studies and primer. Psychol Med. 2010;40:1063–77.

    Article  PubMed  CAS  Google Scholar 

  • Cutler SJ. The use of tumor registry data. Calif Med. 1967;106:98–107.

    PubMed  CAS  Google Scholar 

  • Cutts JW, Mitchell JA. Microcomputer-based genetics office database system. Proc SCAMC. 1985:487–91.

    Google Scholar 

  • David SS. A comprehensive computer-based medical information system. Proc SCAMC. 1977:143–53.

    Google Scholar 

  • De Groot JM, Simpkins JD. Information processing and transplant organ matching. Proc MEDINFO. 1980:1136–9.

    Google Scholar 

  • Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26:1205–2010.

    Article  PubMed  CAS  Google Scholar 

  • Detre K, Holubkov R, Kelsey S, et al. Percutaneous transluminal coronary angioplasty in 1985–1986 and 1977–1981; The National Heart, Lung, and Blood Institute Registry. N Engl J Med. 1988;318:265–70.

    Article  PubMed  CAS  Google Scholar 

  • Dintleman SM, Maness AT, Skolnick MH, Bean LL. GENISYS: a genealogical information system. In: Dyke B, editor. Genealogical demography. New York: Academic; 1980. p. 94–114.

    Google Scholar 

  • Dozier JA, Hammond WE, Stead WW. Creating a link between medical and analytical databases. Proc SCAMC. 1985:478–82.

    Google Scholar 

  • Drolet BC, Johnson KB. Categorizing the world of registries. J Biomed Inform. 2008;41:1009–20.

    Article  PubMed  Google Scholar 

  • ECRI. Implant recalls – do hospitals notify recipients. ECRI Health Techol Trends. 1989;1:7.

    Google Scholar 

  • Engelke SC, Paulette EW, Kopelman AE. Neonatal information system using an interactive microcomputer data base management program. Proc SCAMC. 1981:284–5.

    Google Scholar 

  • Enterline JP, Majidi FM, Rossiter CM, et al. The oncology clinical information system. Proc AMIA. 1993:835–6.

    Google Scholar 

  • Entine SM. Wisconsin storage and retrieval system: A data management system for a clinical cancer center. Proc SCAMC. 1982:813–7.

    Google Scholar 

  • Epstein MN, Walker DE. Natural language access to a melanoma data base. Proc SCAMC. 1978:320–5.

    Google Scholar 

  • Evans S, Lemon SJ, Deters CA, et al. Automated detection of hereditary syndromes using data mining. Comput Biomed Res. 1997a;30:337–48.

    Article  PubMed  CAS  Google Scholar 

  • Evans S, Lemon SJ, Deters CA, et al. Using data mining to characterize DNA mutations by patient clinical features. Proc AMIA. 1997b:253–7.

    Google Scholar 

  • Feigl P, Breslow NE, Laszlo J. The U.S. centralized cancer patient data system for uniform communication among cancer centers. J Natl Cancer Inst. 1981;67:1017–24.

    PubMed  CAS  Google Scholar 

  • Fisher LD, Killip T, Mock MB, et al. Coronary Artery Surgery Study (CASS): a randomized trial of coronary artery bypass surgery; Survival data. Circulation. 1983a;68:939–50.

    Article  Google Scholar 

  • Fisher LD, Killip T, Mock MB, et al. Coronary Artery Surgery Study (CASS): a randomized trial of coronary artery bypass surgery; Quality of life in patients randomly assigned to treatment groups. Circulation. 1983b;68:951–60.

    Article  Google Scholar 

  • Flanigan SP. Computerization of academic vascular surgery. Surgery. 1989;106:911–9.

    PubMed  CAS  Google Scholar 

  • Forrey AW, Pilcher S, Pence S, et al. Medical nomenclature and common conventions for trauma registries. J Med Syst. 1987;11:191–203.

    Article  PubMed  CAS  Google Scholar 

  • Friedman GD, Lewis A. The Kaiser-Permanente Twin Registry. ln Gedda L, Parisi P, Nance WE, editors. Twin research. Part B. Biology and epidemiology. Proc Second International Congress on Twin Studies, 1977; New York: A.R.Liss, Inc, 1978;173–7.

    Google Scholar 

  • Friedman GD, King MC, Klatsky AL, Hulley. Characteristics of smoking-discordant monozygotic twins. In: Gedda L, Parisi P, Nance WE, editors. Part C. Twin research 3. Epidemiological and clinical studies. Twin Research 3; Proc Third International Congress on Twin Studies, 1980. New York: A.R.Liss, Inc, 1981;17–22.

    Google Scholar 

  • Fries JF. Time-oriented patient records and a computer databank. JAMA. 1972;222:1536–42.

    Article  PubMed  CAS  Google Scholar 

  • Fries JF. The chronic disease data bank: first principles to future directions. J Med Philos. 1984;9:161–80.

    Article  PubMed  CAS  Google Scholar 

  • Fries JF, McShane D. ARAMIS: a national chronic disease data bank system. Proc SCAMC. 1979:798–801.

    Google Scholar 

  • Fries JF, McShane DJ. ARAMIS (The American Rheumatism Association Medical Information System), a prototypical national chronic-disease data bank. West J Med. 1986;145:798–804.

    PubMed  CAS  Google Scholar 

  • Fries JF, Hess E, Klinenberg JA. A standard database for rheumatic disease. Arch Rheum. 1974;17:327–36.

    Article  CAS  Google Scholar 

  • Gagnon DE, Schwartz RM, Anderson PA. A national perinatal data base – an idea whose time has come. Proc MEDINFO. 1986:572–4.

    Google Scholar 

  • Galland J, Skolnick MH. A gene mapping expert system. Comput Biomed Res. 1990;23:297–309.

    Article  PubMed  CAS  Google Scholar 

  • Gardner DW, Klatchko DM. A microcomputer based diabetic patient registry for patient management and clinical research. Proc SCAMC. 1985:87–9.

    Google Scholar 

  • Garfield SR. Multiphasic health testing and medical care as a right. N Eng J Med. 1970a;283(20):1087–9.

    Article  CAS  Google Scholar 

  • Garfield SR. The delivery of medical care. Sci Am. 1970b;222:15–23.

    Article  PubMed  CAS  Google Scholar 

  • Garfolo BT, Keltner L. A computerized disease register. Proc MEDINFO. 1983:909–12.

    Google Scholar 

  • Garrido T, Barbeau R. The Northern California perinatal research unit: a hybrid model bridging research, quality improvement and clinical practice. Perm J. 2010;14:51–6.

    PubMed  Google Scholar 

  • Gersting JM. Rapid prototyping of database systems in human genetics data collection. J Med Syst. 1987;11:177–89.

    Article  PubMed  Google Scholar 

  • Gersting JM, Conneally PM, Beidelman K. Huntington’s disease research roster support with a microcomputer database management system. Proc SCAMC. 1983:746–9.

    Google Scholar 

  • Gilbert FI, Nordyke RA. Automated multiphasic health testing in multispecialty group practice. Prev Med. 1973;1:261–5.

    Article  Google Scholar 

  • Glichlich RE, Dreyer NA, editors. Registries for Evaluating Patient Outcomes: A User’s Guide. AHRQ Pub. # 07-EHC001-1. Rockville: Agency for Healthcare Research and Quality, 2007(Apr):1–233.

    Google Scholar 

  • Goldman L, Waternaux C, Garfield F, et al. Impact of a cardiology data bank on physicians’ prognostic estimates. Arch Intern Med. 1981;141:1631–4.

    Article  PubMed  CAS  Google Scholar 

  • Graves M, Bergeman ER, Lawrence CB. A graph conceptual model for developing human genome center databases. Yearbook of Med Informatics 1997:539–52.

    Google Scholar 

  • Gross CR, Dambrosia JM. Quality assurance for clinical data banks. Proc SCAMC. 1981:317–21.

    Google Scholar 

  • Grover J, Spellacy W, Winegar A, et al. Utilization of the University of Illinois regional perinatal database in three areas. Proc AAMSI. 1983:144–7.

    Google Scholar 

  • Hess EV. A uniform database for rheumatic diseases. Arthritis Rheum. 1976;19:645–8.

    Article  PubMed  CAS  Google Scholar 

  • Hill CL, Balch P. On the particular applicability and usefulness of relational database systems for the management and analysis of medical data. Proc SCAMC. 1981:841–6.

    Google Scholar 

  • Hlatky MA, Califf RM, Kong Y, et al. Natural history of patients with single-vessel disease suitable for percutaneous transluminal coronary angioplasty. Am J Cardiol. 1983;52:225–9.

    Article  PubMed  CAS  Google Scholar 

  • Horm JW, Asire AJ, Young JL, Pollack ES. SEER Program: Cancer incidence and mortality in the United States, 1973–81. Bethesda: NIH Pub. No. 85–1837; 1985.

    Google Scholar 

  • Hrubec Z, Neel JV. The national academy of sciences-national research council twin registry: ten years of operation. In: Nance WE, Allan G, Parisi P, editors. Twin research. Part B.1977. Biology and epidemiology. Proc Second International Congress on Twin Studies, 1977. New York: A. R. Liss, Inc. 1978:153–72.

    Google Scholar 

  • Janis M, Zangen M, Gutfeld N, Aisen P. Computerized tumour registry: an efficient system for patient follow-up, therapy evaluation and oncology teaching. In: Laudet M, Anderson J, Begon F, editors. Proc Intnl Symp Medical Data Processing. London: Taylor & Francis 1976:191–6.

    Google Scholar 

  • Jenders RA, Dasgupta B, Mercedes D, Clayton PD. Design and implementation of a multi-institution registry. Proc MEDINFO. 1998:45–9.

    Google Scholar 

  • Jennett RJ, Gall D, Waterkotte GW, Warford HS. A computerized perinatal data system for a region. J Obstet Gynecol. 1978;131:157–61.

    Google Scholar 

  • Kang KW, Merritt AD, Conneally PM, et al. A medical genetics data base management system. Proc SCAMC. 1978:524–9.

    Google Scholar 

  • Karter AJ, Rowell SE, Ackerson LM, et al. Excess maternal transmission of type 2 diabetes. Diabetes Care. 1999;22:938–43.

    Article  PubMed  CAS  Google Scholar 

  • Karter AJ, Moffet HH, Liu J, et al. Achieving good glycemic control: imitation of new antihyperglycemic therapies in patients with type 2 diabetes from the Kaiser Permanente Northern California Registry. Am J Manag Care. 2005;11:262–70.

    PubMed  Google Scholar 

  • Kent KM, Bentivoglio LG, Block PC, et al. Percutaneous transluminal coronary angioplasty: report from the registry of the National Heart, Lung, and Blood Institute. Am J Cardiol. 1982;49:2011–20.

    Article  PubMed  CAS  Google Scholar 

  • Kern SE, Fearon ER, Kasper WF, et al. Allelic loss in colorectal cancer. JAMA. 1989;261:3099–103.

    Article  PubMed  CAS  Google Scholar 

  • Killip T, Fisher LD, Mock MB. National heart, lung, and blood institute coronary artery surgery study. Circulation. 1981;63(supp I):I-1–I-39.

    Google Scholar 

  • Kolata G. Bone marrow registry needs help. San Francisco Chronicle 1989; Dec 11.

    Google Scholar 

  • Kong DF, Lee KL, Harrell FE, et al. Clinical experience and predicting survival in coronary disease. Arch Intern Med. 1989;149:1177–81.

    Article  PubMed  CAS  Google Scholar 

  • Kraus JF, Greenland S, Bulterys M. Risk factors for sudden infant death syndrome in the US collaborative perinatal project. Int J Epidemiol. 1969;18:113–20.

    Article  Google Scholar 

  • Kronmal RA, Davis K, Fisher LD, et al. Data management for a large collaborative clinical trial (CASS: coronary artery surgery study). Comput Biomed Res. 1978;11:553–66.

    Article  PubMed  CAS  Google Scholar 

  • Kunitz SC, Fishman IG, Gross CR. Attributes of data banks for clinical research: an experience-based approach. Proc SCAMC. 1982:837–41.

    Google Scholar 

  • Kuskowski MA. A computerized database for geriatric research and patient care. Proc SCAMC. 1984:352–3.

    Google Scholar 

  • Laszlo J. Health registry and clinical data base technology; with special emphasis on cancer registries. J Chronic Dis. 1985;38:67–78.

    Article  PubMed  CAS  Google Scholar 

  • Laszlo J, Cox E, Angle C. Special article on tumor registries: the hospital tumor registry: Present status and future prospects. Cancer. 1976;38:395–401.

    Article  PubMed  CAS  Google Scholar 

  • Laszlo J, Bailar JC, Mosteller F. Registers and data bases. In: Mosteller F et al., editors. Assessing medical technologies. Washington: National Academy Press; 1985. p. 101–9.

    Google Scholar 

  • Leahey CF. A computer system for processing tumor registry data. Proc SCAMC. 1981:190–5.

    Google Scholar 

  • Leavitt MB, Leinbach RC. A generalized system for collaborative on-line data collection. Comput Biomed Res. 1977;10:413–21.

    Article  PubMed  CAS  Google Scholar 

  • Lindberg DA, Kingsland LC, Roeseler GC, et al. A new knowledge representation for diagnosis in rheumatology. Proc AMIA. 1982:299–303.

    Google Scholar 

  • Lomatch D, Truax T, Savage P. Use of a relational database to support clinical research: application in a diabetes program. Proc SCAMC. 1981:291–5.

    Google Scholar 

  • Long J, Brashear J, Matts J, Peck A. The evolution of a large clinical research database. Proc MEDCOMP IEEE. 1982;224–9.

    Google Scholar 

  • Marciniak TA, Leahey CF, Zufall E, et al. Information systems in oncology. Proc MEDINFO. 1986:508–12.

    Google Scholar 

  • Markham D, Lesser M, Gutelle P. A computerized cancer registry data system at a major teaching hospital. Proc SCAMC. 1984:75–8.

    Google Scholar 

  • Mathur S, Dinakarpandian D. Automated ontological gene annotation for computing disease similarity. Proc AMIA CRI. 2010:12–6.

    Google Scholar 

  • McCormick KA, McQueen ML. The development and use of a database management system for clinical geriatric research. Proc MEDINFO. 1986:527–31.

    Google Scholar 

  • McKinlay SM, Carleton RA, McKenney JL, Assaf AR. A new approach to surveillance for acute myocardial infarction: reproducibility and cost efficiency. Int J Epidemiol. 1989;16:67–83.

    Article  Google Scholar 

  • McKusick VA. An analysis of genetic linkage in man with assistance of digital computer. Proc 1st IBM Symp. Poughkeepsie: IBM, 1959:217–27.

    Google Scholar 

  • McKusick VA. Some computer applications to problems in human genetics. Proc 6th IBM Med Symp. Poughkeepsie: IBM, 1964:207–17.

    Google Scholar 

  • McKusick VA. Computers in research in human genetics. J Chronic Dis. 1966;19:427–41.

    Article  PubMed  CAS  Google Scholar 

  • McKusick VA. Mendelian inheritance in man; catalog of autosomal dominant, autosomal recessive, and X-linked phenotypes. 8th ed. Baltimore: The Johns Hopkins University Press; 1988.

    Google Scholar 

  • McKusick VA. Forty years of medical genetics. JAMA. 1989;261:3155–8.

    Article  PubMed  CAS  Google Scholar 

  • McKusick VA, Cross HE. Geneological linkage of records for two isolate populations. In: Acheson ED, editor. Record linkage in medicine. Edinburgh: E. & S. Livingstone; 1968. p. 263–8.

    Google Scholar 

  • Meaney FJ. Databases for genetic services: current usages and future directions. J Med Syst. 1987;11:227–2132.

    Article  PubMed  CAS  Google Scholar 

  • Merz B. 700 genes mapped at world workshop. JAMA. 1989;262:175.

    Article  PubMed  CAS  Google Scholar 

  • Miller PB, Strong RM. Clinical care and research using MEDUS/A, a medically oriented data base management system. Proc SCAMC. 1978:288–97.

    Google Scholar 

  • Miller PL, Nadkarni PM, Kidd KK, et al. Internet-based support for bioscience research: a collaborative genome center for human chromosome 12. JAMIA. 1995;2:351–64.

    PubMed  CAS  Google Scholar 

  • Mitchell JA, Loughman WD, Epstein C. GENFILES: a computerized medical genetics information network II MEDGEN: the clinical genetics system. Am J Med Genet. 1980;7:251–66.

    Article  PubMed  CAS  Google Scholar 

  • Murphy EA, Schulze J. A program for estimation of genetic linkage in man. Proc 3rd IBM Med Symposium. Endicott: IBM, 1961:105–16.

    Google Scholar 

  • Murphy EA, Sherwin RW. Estimation of genetic linkage: an outline. Methods Inform Med. 1966;5:45–54.

    CAS  Google Scholar 

  • Murray CL, Wallace JF. The case summary: tumor registry information available for cancer care. Proc SCAMC. 1981:187–9.

    Google Scholar 

  • Nadkarni PM, Brandt C, Frawley S, et al. Managing attribute-value clinical trials data using ACT/DB client-server database system. JAMIA. 1998;5:139–51.

    PubMed  CAS  Google Scholar 

  • Nadkarni PM, Brandt C, Marenco L. WebEAV. JAMIA. 2000;7:343–56.

    PubMed  CAS  Google Scholar 

  • Nagey DA, Wright JN, Mulligan K, Crenshaw C. A convertible perinatal database. MD Comput. 1989;6:28–36.

    PubMed  CAS  Google Scholar 

  • NCI, Preliminary Report Third National Cancer Survey, 1969 Incidence. Bethesda: Biometry Branch, National Cancer Institute, National Institutes of Health 1971.

    Google Scholar 

  • Neitlich HW, Priest SL, O’Sullivan VJ. Development of a computerized cancer registry and impact on medical care. Proc Jt Conf SCM & SAMS. Washington, DC. 1981:10–2.

    Google Scholar 

  • Neitlich HW, Priest SL, O’Sullivan VJ. Development of a regional computerized cancer registry and impact on medical care. J Med Syst. 1983;7:251–5.

    Article  PubMed  CAS  Google Scholar 

  • Nichols BJ, Rush RL, Moss PJ, et al. Data entry for multiple center data banks – a microprocessor approach. Proc SCAMC. 1981:307–10.

    Google Scholar 

  • Niland JC, Stahl D, Rouse L. An internet-based database system for outcomes research in the National Cancer Center and community settings. Proc AMIA. 2001:1080.

    Google Scholar 

  • Nordyke RA, Kulikowski CA. An informatics-based chronic disease practice. JAMIA. 1998;5:88–103.

    PubMed  CAS  Google Scholar 

  • Nordyke RA, Gilbert FL, Mussen GA. Semi-automated reporting system for a nuclear medicine department. Proc AAMSI. 1982:183–7.

    Google Scholar 

  • O’Bryan JP, Purtilo DT. Use of the Apple III micro-computer for a nominal cancer registry. Proc AMIA. 1982:67–71.

    Google Scholar 

  • Oehrli MD, Quesenbery CP, Hurley LB. Northern California Cancer Registry. Summarizing data reported to the California Cancer Registry 1947–1998. Oakland: Kaiser Permanente, 1999:2–32.

    Google Scholar 

  • Oehrli MD, Quesenbery CP, Leyden W. Northern California Cancer Registry. Ten-year data summary 1990–1999. Oakland: Kaiser Permanente, 2001:2–36.

    Google Scholar 

  • Oehrli MD, Quesenbery CP, Leyden W. Northern California Cancer Registry at the Division of Research. Cases diagnosed 1947–2000. Oakland: Kaiser Permanente, 2002:2–38.

    Google Scholar 

  • Peckham BM, Slack WV, Carr WF, et al. Computerized data collection in the management of uterine cancer. Clin Obstet Gyn. 1967;10:1003–15.

    Article  CAS  Google Scholar 

  • Peterson MG, Lerer TJ, Testa MA. Designing a database system for the Division of Rheumatology. Proc SCAMC. 1983:179–81.

    Google Scholar 

  • Phillips W. Record linkage for a chronic disease register. In: Acheson ED, editor. Record linkage in medicine. Edinburgh: E. & S. Livingstone; 1968. p. 120–51.

    Google Scholar 

  • Pollack DA, McClain PW. Trauma registries; current status and future prospects. JAMA. 1989;262:2280–5.

    Article  Google Scholar 

  • Pollizzi JA. The design of a “functional” database system and its use in the management of the critically ill. Proc SCAMC. 1983:167–70.

    Google Scholar 

  • Prather JC, Lobatch DF, Goodwin LK, et al. Medical data mining: Knowledge discovery in a clinical data warehouse. Proc AMIA Symp. 1997:101–5.

    Google Scholar 

  • Priest SL, O’Sullivan VJ, Neitlich HW. The development of a regional computerized cancer registry. Proc SCAMC. 1983:146–8.

    Google Scholar 

  • Priore RL, Lane WW, Edgerton FT, et al. RPMIS: the Roswell Park management information system. Proc SCAMC. 1978:566–80.

    Google Scholar 

  • Prokosch HU, Seuchter SA, Thompson EA, Skolnick MH. Applying expert system techniques to human genetics. Comput Biomed Res. 1989;22:234–7.

    Article  PubMed  CAS  Google Scholar 

  • Pryor DB, Lee KL. Methods for analysis and assessment of clinical databases: the clinician’s perspective. Stat Med. 1991;10:617–28.

    Article  PubMed  CAS  Google Scholar 

  • Pryor TA, Warner HR. Admitting screening at latter-day saints hospital. In: Davies DF, editor. Health evaluation, an entry to the health care system. New York: Intercontinental Medical Book Co.; 1973.

    Google Scholar 

  • Pryor DB, Califf RM, Harrell FE, et al. Clinical data bases: accomplishments and unrealized potential. Med Care. 1985;23:623–47.

    Article  PubMed  CAS  Google Scholar 

  • Pryor DB, Shaw L, Harrell FE, et al. Estimating the likelihood of severe coronary artery disease. Am J Med. 1991;90:553–62.

    PubMed  CAS  Google Scholar 

  • Reemtsma K, Yoder RD, Lindsey ES. Automated data processing and computer analysis in renal transplantation. JAMA. 1966;196:165–6.

    Article  Google Scholar 

  • Reid JC, Johnson JC. Starting a patient database for chronic disease. Proc AAMSI. 1989:144–8.

    Google Scholar 

  • Richie S. Hands on demonstration of the VA-DHCP automated tumor registry for oncology. Proc AMIA. 1993:839–40.

    Google Scholar 

  • Rickli AE, Leonard MS, Takasugi S. Renal model showing needs and resource requirements. Proc MEDIS. 1978:18–21.

    Google Scholar 

  • Rogers WJ, Canto JG, Lambrew C, et al. Temporal trends in the treatment of over 1.5 million patients with myocardial infarction in the US from 1990 through 1999: national registry of myocardial infarction 1, 2 and 3. Am J Coll Cardiol. 2000;36:2056–63.

    Article  CAS  Google Scholar 

  • Rosati RA, Wallace AG, Stead EA. The way of the future. Arch Intern Med. 1973;131:285–7.

    Article  PubMed  CAS  Google Scholar 

  • Rosati RA, Lee KL, Califf RM, et al. Problems and advantages of an observational data base approach to evaluating the effect of therapy on outcome. Circulation. 1982;65(suppl II):27–32.

    Article  PubMed  CAS  Google Scholar 

  • Seime RJ, Rine DC. The behavioral medicine data retrieval and analysis program at West Virginia University Medical Center. Proc SCAMC. 1978:125–31.

    Google Scholar 

  • Seuchter SA, Skolnick MH. HGDBMS: a human genetics database management system. Comput Biomed Res. 1988;21:478–87.

    Article  PubMed  CAS  Google Scholar 

  • Shankar BS, Southard JW, Malone SJ, Cowley RA. Maryland disabled individual reporting system. Proc SCAMC. 1985:117–9.

    Google Scholar 

  • Skolnick M. The Utah geneological data base: a resource for genetic epidemiology. Banbury Report 4: Cancer Incidence in Defined Populations, Cold Spring Harbor Laboratory, 1980:285–97.

    Google Scholar 

  • Skolnick M, Bean L, May D, et al. Mormon demographic history. I. Nuptiality and fertility of once-married couples. Popul Stud. 1978;32:5–19.

    CAS  Google Scholar 

  • Starmer CF, Rosati RA. Computer-based aid to managing patients with chronic illness. Computer. 1975;8:46–50.

    Article  Google Scholar 

  • Starmer CF, Rosati RA, McNeer FM. Editorial: data bank use in management of chronic diseases. Comput Biomed Res. 1974;7:111–6.

    Article  PubMed  CAS  Google Scholar 

  • Stead WW. Using computers to care for patients with renal disorders. MD Comput. 1984;1:42–9.

    PubMed  CAS  Google Scholar 

  • Swyers JP. Genetic data base service. Research Resources Reporter. 1989(Dec):13–4.

    Google Scholar 

  • Talucci RC, Talucci JA, O’Malley KF, Schwab CW. Experience with the patient information management system/trauma registry. Proc AAMSI. 1987:178–83.

    Google Scholar 

  • Tatman JL, Boutselis JG. Rule-based error-checking in a gynecologic oncology therapy registry. Proc AAMSI. 1984:167–71.

    Google Scholar 

  • Thatford NA, McKernon RF, Flannery JT, Weiss T. Central cancer registry data management system. Proc SCAMC. 1979:804–13.

    Google Scholar 

  • Tuttle MS, Abarbanal R, Blois MS, Taylor H. Use of a relational DBMS to acquire & investigate patient records in a melanoma clinic. Proc AMIA. 1982:95–6

    Google Scholar 

  • Vallbona C, Spencer WA. Texas institute for research and rehabilitation hospital computer system (Houston). In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 622–700.

    Google Scholar 

  • Vallbona C, Spencer WA, Levy AH, et al. An online computer system for a rehabilitation hospital. Methods Inform Med. 1968;7:31–9.

    CAS  Google Scholar 

  • Vallbona C, Spencer WA, Moffet CL, et al. The patient centered information system of the Texas Institute for Rehabilitation and Research. Proc SAMS. 1973:232–60.

    Google Scholar 

  • Warford HS, Jennett RJ, Gall DA. A computerized perinatal data system. Med Inform. 1979;4:133–8.

    Article  CAS  Google Scholar 

  • Warner HR. A computer based information system for patient care. In: Bekey GA, Schwartz MD, editors. Hospital information systems. New York: Marcel Dekker; 1972. p. 293–332.

    Google Scholar 

  • Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for Deoxyribose Nucleic Acid. Nature. 1953;171:737–8.

    Article  PubMed  CAS  Google Scholar 

  • Weiland AJ. The challenges of genetic advances. Healthplan. 2000;41:24–30.

    PubMed  CAS  Google Scholar 

  • Wel Y, Cook BA, Casagrande JT, Bass A. User incorporation of tumor registry function within a commercially available medical information system. Proc SCAMC. 1987:842–7.

    Google Scholar 

  • Weyl S, Fries J, Wiederhold G, Germano F. A modular self-describing clinical databank system. Comput Biomed Res. 1975;8:279–93.

    Article  PubMed  CAS  Google Scholar 

  • Young JL, Asire A, Pollock E. SEER Program; Cancer incidence and mortality in the United States 1973–1976. DHEW Pun. No. (NIH) 78–1837. Bethesda: National Cancer Institute. 1976.

    Google Scholar 

  • Yu H., Hripcsak G. A large scale family health history data set. Proc AMIA. 2000:1162.

    Google Scholar 

  • Yusim S, Vallbona C. Use of health-illness profile data base in health services research. Proc MEDINFO. 1986:731–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Collen, M.F. (2012). Specialized Medical Databases. In: Computer Medical Databases. Health Informatics. Springer, London. https://doi.org/10.1007/978-0-85729-962-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-962-8_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-961-1

  • Online ISBN: 978-0-85729-962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics