Skip to main content

Primary Medical Record Databases

  • Chapter
  • First Online:
  • 1067 Accesses

Part of the book series: Health Informatics ((HI))

Abstract

Primary medical record databases are data repositories constructed for direct health care delivery to process clinical information, to carry out the special functions for which the data have been collected, integrated, and stored by health-care providers for the direct care of their patients. Medical record data are collected in a variety of medical sites and for a variety of purposes, including helping physicians in making decisions for the diagnosis and treatment of patients, helping nurses in their patient care functions, and helping technical personnel in their clinical support services. The great utility of medical databases resides in their capacity for storing huge volumes of data, and for their ability to help users to search, retrieve, and analyze information on individual patients relevant to their clinical needs. Michalski et al. (1982) added that medical databases were also constructed, in addition to keeping track of clinical data, to be used to study and learn more about the phenomena that produced the data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ammenwerth E, Schnell-Inderst P, Machan C, Siebert U. The effect of electronic prescribing on medication errors and adverse drug events: a systemic review. J Am Med Inform Assoc. 2008;15:585–600.

    Article  PubMed  Google Scholar 

  • Anderson JG, Jay SJ, Anderson M, Hunt TJ. Evaluating the potential effectiveness of using computerized information systems to prevent adverse drug events. Proc AMIA Symp. 1997:228–2 (#4)

    Google Scholar 

  • Barnett GO. Massachusetts general hospital computer system. In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 517–45.

    Google Scholar 

  • Barnett GO. Computer-stored Ambulatory Record (COSTAR). NCHSR Research Digest Series. DHEW Pub. No.(HRA) 1976;76–3145.

    Google Scholar 

  • Barnett GO. The application of computer-based medical record systems in ambulatory practice. In: Orthner HF, Blum BI, editors. Implementing health care information systems. New York: Springer; 1989. p. 85–99.

    Chapter  Google Scholar 

  • Barnett GO. History of the development of medical information systems at the laboratory of computer science at Massachusetts general hospital. In: Blum BI, Duncan K, editors. A history of medical informatics. New York: Addison-Wesley Pub. Co; 1990. p. 141–53.

    Google Scholar 

  • Barnett GO, Castleman PA. A time-sharing computer for patient care activities. Comput Biomed Res. 1967;1:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Barnett GO, Hoffman PB. Computer technology and patient care: experiences of a hospital research effort. Inquiry. 1968;5:51–7.

    Google Scholar 

  • Barnett GO, Justice NS, Somand ME, et al. COSTAR – a computer-based medical information system for ambulatory care. Proc SCAMC. 1978: 486–7.

    Google Scholar 

  • Barrett JP, Hersch PL, Caswell RJ. Evaluation of the impact of the Technicon Medical System Information at El Camino Hospital. Part II. Economic trend analysis, NCHSR&D, vol. NTIS No. PB 300 869. Columbus: Battelle Columbus Labs; 1979.

    Google Scholar 

  • Barnett GO, Souder D, Beaman P, Hupp J. MUMPS – an evolutionary commentary. Comput Biomed Res. 1981;14:112–8.

    Article  PubMed  CAS  Google Scholar 

  • Bates DW, Leape LL, Petrycki S. Incidence and preventability of adverse drug events in hospitalized patients. J Gen Intern Med. 1993;8:289–94.

    Article  PubMed  CAS  Google Scholar 

  • Bates DW, O’Neil AC, Boyle D, et al. Potential identifiability and preventability of adverse events using information systems. J Am Med Inform Assoc. 1994;1:404–11.

    Article  PubMed  CAS  Google Scholar 

  • Bates DW, Cullen DJ, Laird N, et al. Incidence of adverse drug events and potential adverse drug events. JAMA. 1995;274:29–34.

    Article  PubMed  CAS  Google Scholar 

  • Bates DW, Leape LL, Cullen DJ, et al. Effect of computerized physician order entry and a team intervention on prevention of serious medication errors. JAMA. 1998;280:1311–6.

    Article  PubMed  CAS  Google Scholar 

  • Bates DW, Teich JM, Lee J, et al. The impact of computerized physician order entry on medication error prevention. J Am Med Inform Assoc. 1999;6:313–21.

    Article  PubMed  CAS  Google Scholar 

  • Beggs S, Vallbona C, Spencer WA, et al. Evaluation of a system for on-line computer scheduling of patient care activities. Comput Biomed Res. 1971;4:634–54.

    Article  PubMed  CAS  Google Scholar 

  • Berndt DJ, Hevner AR, Studnicki J. CATCH/IT: a data warehouse to support comprcommunity health. Proc AMIA Symp. 1998:250–4.

    Google Scholar 

  • Bickel RG. The TRIMIS concept. Proc SCAMC. 1979:839–2.

    Google Scholar 

  • Bleich HL. Computer evaluation of acid-base disorders. J Clin Invest. 1969;48:1689–96.

    Article  PubMed  CAS  Google Scholar 

  • Bleich HL, Beckley RF, Horowitz GL, et al. Clinical computing in a teaching hospital. N Engl J Med. 1985;312:756–64.

    Article  PubMed  CAS  Google Scholar 

  • Blois MS. The physician’s personal workstation. MD Comput. 1985;5:22–6.

    Google Scholar 

  • Blose WF, Vallbona C, Spencer WA. System for processing clinical research data. II. System design. Proc 6th IBM Symp. Poughkeepsie, New York: IBM, 1964;463–85.

    Google Scholar 

  • Blum BI. Programming languages. In: Blum BI, editor. Clinical information syatems. New York: Springer; 1986. p. 112–49.

    Chapter  Google Scholar 

  • Blum BI, Lenhard RE. Design of an oncology clinical information system. Proc Annual Conf, ACM. 1977:101–7.

    Google Scholar 

  • Blum BI, Lenhard RE, McColligan EE. An integrated model for patient care. IEEE Trans Biomed Eng. 1985;32:277–88.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard VE, Bell JE, Freedy HR, et al. A computerized system for screening drug interactions and interferences. Am J Hosp Pharm. 1973;29:564–9.

    Google Scholar 

  • Brannigan VN. Remote telephone access: the critical issue in patient privacy. Proc SCAMC. 1984:575–8.

    Google Scholar 

  • Brennan TA, Leape LL, Laird NM, et al. Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study. N Engl J Med. 1991;324:370–6.

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Black K, Mrochek S, et al. RADARx: Recognizing, assessing, and documenting adverse Rx events. Proc AMIA Symp. 2000:101–5.

    Google Scholar 

  • BSL – Berkeley Scientific Laboratories. A Study of Automated Clinical Laboratory Systems. National Center for Health Services Research and Development, DHEW Pub No. (HSM) 72–3004; (Aug), Washington, D.C.: U.S. Government Printing Office, 1971.

    Google Scholar 

  • Buchanan NS. Evolution of a hospital information system. Proc SCAMC. 1980:34–6.

    Google Scholar 

  • Campbell CM. Information system for a short-term hospital. Hospitals. 1964;38:71–85.

    PubMed  CAS  Google Scholar 

  • Caranasos GJ, May FE, Stewart RB, Cluff LE. Drug-associated deaths of medical inpatients. Arch Intern Med. 1976;136:872–5.

    Article  PubMed  CAS  Google Scholar 

  • Cecil JS, Griffin E. The role of legal policies in data sharing. In: Fienberg SF, Martin ME, Straf ML, editors. Sharing research data. Washington, D.C: National Academy Press; 1985. p. 148–98.

    Google Scholar 

  • Christianson LG. Toward an automated hospital information system. Ann N Y Acad Sci. 1969;161:694–706.

    Article  PubMed  CAS  Google Scholar 

  • Chute CG, Crowson DL, Buntrock JD. Medical information retrieval and WWW browsers at Mayo. Proc SCAMC. 1995:905–7.

    Google Scholar 

  • Chute CG, Elkin PL, Sheretz DD, Tuttle MS. Desiderata for a clinical terminology server. Proc AMIA. 1999:42–6.

    Google Scholar 

  • Classen DC, Pestotnik SL, Evans RS, Burke JP. Computerized surveillance of adverse drug events in hospital patients. JAMA. 1991;266:2847–51.

    Article  PubMed  CAS  Google Scholar 

  • Classen DC, Pestonik SL, Evans RC, et al. Adverse drug events in hospitalized patients. JAMA. 1997;277:301–6.

    Article  PubMed  CAS  Google Scholar 

  • Cluff LE, Thornton GF, Seidl LG. Studies on the epidemiology of adverse drug reactions. I. Methods of surveillance. JAMA. 1964;188:976–83.

    Article  PubMed  CAS  Google Scholar 

  • Cohen SN, Armstrong MF, Crouse L, Hunn GS. A computer-based system for prospective detection and prevention of drug interactions. Drug Inform J. 1972 (Jan/June). p. 81–6.

    Google Scholar 

  • Cohen SN, Armstrong MF, Briggs RL, et al. Computer-based monitoring and reporting of drug interactions. Proc MEDINFO. 1974:889–94.

    Google Scholar 

  • Cohen SN, Kondo L, Mangini RJ, et al. MINERVA: A computer-based system for monitoring drug therapy. NCHSR Research Summary Series. DHHS Publication No. (PHS) 87–3376, NCHSR & Health Care Tech Assessment, Dec. 1987.

    Google Scholar 

  • Collen MF. Multiphasic screening as a diagnostic method in preventive medicine. Methods Inf Med. 1965;4:71–4.

    PubMed  CAS  Google Scholar 

  • Collen MF. Periodic health examinations using an automated multi-test laboratory. JAMA. 1966;195:830–3.

    Article  PubMed  CAS  Google Scholar 

  • Collen MF. General requirements of a medical information system (MIS). Comput Biomed Res. 1970;3:393–406.

    Article  PubMed  CAS  Google Scholar 

  • Collen MF. Data processing techniques for multitest screening and hospital facilities. In: Bekey GA, Schwartz MD, editors. Hospital information systems. New York: Marcel Dekker; 1972. p. 149–87.

    Google Scholar 

  • Collen MF. Automated multiphasic health testing. In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 274–94.

    Google Scholar 

  • Collen MF. The Permanente Medical Group and the Kaiser Foundation Research Institute. In: McLean ER, Soden JV, editors. Strategic planning for MIS. New York: Wiley; 1977. p. 257–71.

    Google Scholar 

  • Collen MF, editor. Multiphasic health testing systems. New York: Wiley; 1978.

    Google Scholar 

  • Collen MF. Clinical research databases – a historical review. J Med Syst. 1990;14:323–44.

    Article  PubMed  CAS  Google Scholar 

  • Coltri A et al. Databases in health care. In: Lehman HP, Abbott PA, Roderer NK, editors. Aspects of electronic health record systems. 2nd ed. New York: Springer; 2006. p. 225–51.

    Google Scholar 

  • Connelly DP. Embedding expert systems in laboratory information systems. Am J Clin Pathol. 1990;94 Suppl 1:S7–14.

    PubMed  CAS  Google Scholar 

  • Cope CB. A centralized nation-wide patient data system. In: Acheson ED, editor. Record linkage in medicine. Edinburgh: E. & S. Livingstone; 1968. p. 34–8.

    Google Scholar 

  • Davis LS. Prototype for future computer medical records. Comput Biomed Res. 1970;3:539–54.

    Article  PubMed  CAS  Google Scholar 

  • Davis LS. A system approach to medical information. Methods Inf Med. 1973;12:1–6.

    PubMed  CAS  Google Scholar 

  • Davis L, Terdiman J. The medical data base. In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 52–79.

    Google Scholar 

  • Davis LS, Collen MF, Rubin L, Van Brunt EE. Computer-stored medical record. Comput Biomed Res. 1968;1:452–69.

    Article  PubMed  CAS  Google Scholar 

  • Del Fiol G, Rocha B, Kuperman GJ, Bates DW, et al. Comparison of two knowledge bases on the detection of drug-drug interactions. Proc AMIA Symp. 2000:171–5 (#4)

    Google Scholar 

  • Dick RS, Steen EB. Essential technologies for computer-based patient records: a summary. In: Ball MJ, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992. p. 229–61.

    Google Scholar 

  • Dolin RH. Interfacing a commercial drug-interaction program with an automatic medical record. MD Comput. 1992;9:115–8.

    PubMed  CAS  Google Scholar 

  • Duke JR, Bowers GH, et al. Scope and sites of electronic health record systems. In: Lehman HP, Abbott PA, Roderer NK, editors. Aspects of electronic health record systems. New York: Springer; 2006. p. 89–114.

    Google Scholar 

  • Dyson E. Reflections on privacy 2.0. Sci Am. 2008;301:50–5.

    Google Scholar 

  • Emmel GR, Greenhalgh RC. Hospital information system study (part I). Proc 4th IBM Med Symp. Endicott: IBM; 1962:443–58.

    Google Scholar 

  • Esterhay RJ, Foy JL, Lewis TL, et al. Hospital information systems: approaches to screen definition: comparative anatomy of the PROMIS, NIH, and Duke systems. Proc SCAMC. 1982:903–11.

    Google Scholar 

  • Evans RS, Pestotnik SL, Classen DS, et al. Development of a computerized adverse drug event monitor. Proc AMIA Symp. 1992:23–7.

    Google Scholar 

  • Evans RS, Pestotnik SL, Classen DC, et al. Preventing adverse drug events in hospitalized patients. Ann Pharmacother. 1994;28:523–7.

    PubMed  CAS  Google Scholar 

  • Fassett WE. Drug related informatics standards. Proc AAMSI. 1989:358–62.

    Google Scholar 

  • Fetter RR, Mills RE. A micro computer based medical information system. In Begon F, Anderson J, Saito M, et al (eds). Proc 2nd Annual WAMI Meeting, France: 1979:388–91.

    Google Scholar 

  • Friedman GD. Computer data bases in epidemiological research. Proc AAMSI Symp. 1984:389–92.

    Google Scholar 

  • Friedman GD. Kaiser permanente medical care program: Northern California and other regions. In: Strom BL, editor. Pharmacoepidemiology. 4th ed. New York: Wiley; 1994. p. 187–97.

    Google Scholar 

  • Friedman C, Hripcsak G, Johnson SB, et al. A generalized relational schema for an integrated clinical patient database. Proc SCAMC. 1990:335–9.

    Google Scholar 

  • Friedman GD, Habel LA, Boles M, McFarland BH. Kaiser permanente medical care program: Division of Research, Northern California, and Center for Health Research, Northwest Division. In: Strom BL, editor. Pharmacoepidemiology. 3rd ed. New York: Wiley; 2000. p. 263–83.

    Chapter  Google Scholar 

  • Gall J. Cost-benefit analysis: total hospital information systems. In: Koza RC, editor. Health information system evaluation. Boulder: Colorado Association University Press; 1974. p. 299–327.

    Google Scholar 

  • Gall JE. Computerized hospital information system cost-effectiveness: a case study. In: Van Egmond J, de Vries Robbe PF, Levy AH, editors. Information systems for patient care. Amsterdam: North-Holland; 1976. p. 281–93.

    Google Scholar 

  • Gardner RM, Pryor TA, Warner HR. The HELP hospital information system: update 1998. Int J Med Inform. 1999;54:169–82.

    Article  PubMed  CAS  Google Scholar 

  • Garten S, Mengel CE, Stewart WB, Lindberg DA. A computer-based drug information system. Mo Med. 1974;71:183–6.

    PubMed  CAS  Google Scholar 

  • Garten S, Falkner RV, Mengel CE, Lindberg DA. A computer based drug information system. Med Electronics Digest. 1977;2:4–5.

    Google Scholar 

  • Giebink GA, Hurst LL. Computer projects in health care. Ann Arbor: Health Administration Press; 1975.

    Google Scholar 

  • Gordis L, Gold E. Privacy, confidentiality, and the use of medical records in research. Science. 1980;207:153–6.

    Article  PubMed  CAS  Google Scholar 

  • Gotcher SB, Carrick J, Vallbona C, et al. Daily treatment planning with on-line shared computer system. Methods Inf Med. 1969;8:200–5.

    PubMed  CAS  Google Scholar 

  • Graetz I, Reed M, Rundall T, et al. Care coordination and electronic health records: connecting clinicians. Proc AMIA. 2009:208–12.

    Google Scholar 

  • Grams RR. Medical information systems: the laboratory module. Clifton: Humana Press; 1979.

    Google Scholar 

  • Grams R. The “new” America electronic medical record (EMR) – Design criteria and challenge. J Med Syst. 2009;33:409–11.

    Article  PubMed  Google Scholar 

  • Grams RR, Zhang D, Yue B. A primary care application of an integrated computer-based pharmacy system. J Med Syst. 1996;20:413–22.

    Article  PubMed  CAS  Google Scholar 

  • Greenes RA, Papillardo AN, Marble CW, Barnett GO. Design and implementation of a clinical data management system. Comput Biomed Res. 1969;2:469–85.

    Article  PubMed  CAS  Google Scholar 

  • Greenes RA, Collen M, Shannon RH. Functional requirements as an integral part of the design and development process: summary and recommendations. Int J Biomed Comput. 1994;34:59–76.

    Article  PubMed  CAS  Google Scholar 

  • Greenlaw CW, Zellers DD. Computerized drug-drug interaction screening system. Am J Hosp Pharm. 1978;35:567–70.

    PubMed  CAS  Google Scholar 

  • Grossman JH, Barnett GO, Koepsell TD, et al. An automated medical record system for a prepaid group practice. JAMA. 1973;224:1616–21.

    Article  PubMed  CAS  Google Scholar 

  • Groves WE, Gajewski WH. Use of a clinical laboratory computer to warn of possible drug interference with test results. Proc SCAMC. 1978:426–34.

    Google Scholar 

  • Hammond WE, Brantley BA, Feagin SJ, et al. GEMISCH: A minicomputer information support system. Proc IEEE. 1973:61:1575–83.

    Google Scholar 

  • Hammond WE, Stead WW, Feagin SJ, et al. Data base management system for ambulatory care. Proc SCAMC. 1977:173–87.

    Google Scholar 

  • Hammond WE, Stead WW, Straube MJ, Jelovsek FR. A clinical data management system. Interntl J Policy & Information. 1980;4:79–86.

    Google Scholar 

  • Hammond WE, Stead WW, Straube MJ. Planned networking for medical information systems. Proc SCAMC. 1985:727–31.

    Google Scholar 

  • Hammond WE, Straube MJ, Stead WW. The synchronization of distributed databases. Proc SCAMC. 1990:345–49.

    Google Scholar 

  • Haug PJ, Gardner RM, Tate KE, et al. Decision support in medicine: examples from the HELP system. Comput Biomed Res. 1994;27:396–418.

    Article  PubMed  CAS  Google Scholar 

  • Healy JC, Spackman KA, Beck JR. Small expert systems in clinical pathology. Arch Pathol Lab Med. 1989;113:981–3.

    PubMed  CAS  Google Scholar 

  • Hodge MH. Medical information systems: a resource for hospitals. Germantown: Aspen Systems Corp; 1977.

    Google Scholar 

  • Hripcsak G, Clayton PD, Jenders RA, et al. Design of a clinical event monitor. Comput Biomed Res. 1996;29:194–221.

    Article  PubMed  CAS  Google Scholar 

  • Hulse RK, Clark SJ, Jackson JC, et al. Computerized medication monitoring system. Am J Hosp Pharm. 1976;33:1061–4.

    PubMed  CAS  Google Scholar 

  • Jelliffe RW, Schumitsky A, Rodman J, Crone J. A package of time-shared computer programs for patient care. Proc SCAMC. 1977:154–62.

    Google Scholar 

  • Jha AK, Kuperman GJ, Teich JM. Identifying adverse drug events. JAMIA. 1998;5:305–14.

    PubMed  CAS  Google Scholar 

  • Jick H. Drug surveillance program. Med Sci. 1967 (Jul) 41–6.

    Google Scholar 

  • Jick H. The discovery of drug-induced illness. New Eng J Med. 1977;296:481–5.

    Article  PubMed  CAS  Google Scholar 

  • Jick H, Miettinen OS, Shapiro S, et al. Comprehensive drug surveillance. JAMA. 1970;213: 1455–60.

    Article  PubMed  CAS  Google Scholar 

  • Jick H et al. In-hospital monitoring of drug effects – past accomplishments and future needs. In: Ducrot H, Goldberg M, Hoigne R, editors. Computer aid to drug therapy and to drug monitoring. New York: North-Holland Pub Co; 1978. p. 3–7.

    Google Scholar 

  • Johns RJ, Blum BI. The use of clinical informations to control cost as well as to improve care. Trans Am Clin Climatol Assoc. 1978;90:140–52.

    Google Scholar 

  • Juenemann HJ. The design of a data processing center for biological data. Ann N Y Acad Sci. 1964;115:547–52.

    PubMed  CAS  Google Scholar 

  • Karch FE, Lasagna L. Adverse drug reactions: a critical review. JAMA. 1976;234:1236–41.

    Article  Google Scholar 

  • Klee GG, Ackerman E, Elveback LR, et al. Investigation of statistical decision rules for sequential hematologic laboratory tests. Am J Clin Pathol. 1978;69:375–82.

    PubMed  CAS  Google Scholar 

  • Kohn LT, Corrigan JM, Donaldson MD. To err is human: building a safer health system. A report of the Committee on Quality of Health Care in America. Washington, DC: Institute of Medicine National Academy Press; 2000.

    Google Scholar 

  • Kuperman GJ, Gardner RM, Pryor TA. The Pharmacy application of the HELP system. In: Help: a Dynamic Hospital Information System, New York, Springer-Verlag; 1991. p. 168–72.

    Google Scholar 

  • Kuperman GJ, Bates DW, Teich JM, et al. A new knowledge structure for drug-drug interactions. Proc AMIA Symp. 1994:836–40.

    Google Scholar 

  • Kuperman GJ, Teich JM, Tanasjevic MJ, et al. Improving response to critical laboratory results with automation. J Am Med Inform Assoc. 1999;6:512–22.

    Article  PubMed  CAS  Google Scholar 

  • Kurland LT, Molgaard CA. The patient record in epidemiology. Sci Am. 1981;245:54–63.

    Article  PubMed  CAS  Google Scholar 

  • Lamson BG. Mini-computers and large central processors from a medical record management point of view. Proc MEDIS ’75 Tokyo: International Symposium on Medical Information Systems. 1975:58–65.

    Google Scholar 

  • Lamson BG, Russell WS, Fullmore J, Nix WE. The first decade of effort: progress towards a hospital information system at the UCLA Hospital, Los Angeles, California. Methods Inf Med. 1970;9:73–80.

    PubMed  CAS  Google Scholar 

  • Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279:1200–5.

    Article  PubMed  CAS  Google Scholar 

  • Leape LL, Bates DW, Cullen DJ, et al. Systems analysis of adverse drug events. JAMA. 1995;274:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Lesar TS, Briceland LL, Delcoure K, et al. Medication errors in a teaching hospital. JAMA. 1990;263:2329–34.

    Article  PubMed  CAS  Google Scholar 

  • Levy AH, Lawrance DP. Information retrieval. In: Ball MJ, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992. p. 146–52.

    Google Scholar 

  • Lincoln TL, Korpman RA. Computers, health care, and medical information science. Science. 1980;210:257–63.

    Article  PubMed  CAS  Google Scholar 

  • Lindberg DAB. A computer in medicine. Mo Med. 1964;61:282–4.

    PubMed  CAS  Google Scholar 

  • Lindberg DAB. Operation of a hospital computer system. J Am Vet Med Assoc. 1965a;147: 1541–4.

    PubMed  CAS  Google Scholar 

  • Lindberg DAB. Electronic retrieval of clinical data. J Med Educ. 1965b;40:753–9.

    PubMed  CAS  Google Scholar 

  • Lindberg DAB. Collection, evaluation, and transmission of hospital laboratory data. Methods Inf Med. 1967;6:97–107.

    PubMed  CAS  Google Scholar 

  • Lindberg DAB. The computer and medical care. Springfield: Charles C. Thomas; 1968.

    Google Scholar 

  • Lindberg DA. University of missouri-columbia. In: Lindberg DAB, editor. The growth of medical information systems in the united states. Lexington: Lexington Books; 1979.

    Google Scholar 

  • Lindberg DA. The impact of automated information systems applied to health problems. In: Holland W, Detels R, Knox G. Oxford text of public health. Vol. 3. Investigative Methods in Public Health. Oxford: Oxford University Press; 1985. p. 55–76.

    Google Scholar 

  • Lindberg DAB, Reese GR, Buck C. Computer generated hospital diagnosis file. Mo Med. 1964;61:851–2.

    Google Scholar 

  • Lindberg DAB, Van Pelnan HJ, Couch RD. Patterns in clinical chemistry. Am J Clin Pathol. 1965;44:315–21.

    PubMed  CAS  Google Scholar 

  • Lindberg DAB, Rowland LR, Buch WF, et al. CONSIDER: A computer program for medical instruction. Proc 9th IBM Med Symp. Yorktown Heights: 1968:59–61.

    Google Scholar 

  • Lindberg DAB, Takasugi S, DeLand E.C. Analysis of blood chemical components distribution based on thermodynamic principle. Proc MEDIS ’78. Osaka, Japan: 1978:109–12.

    Google Scholar 

  • Lindberg DAB, Gaston LW, Kingsland LC, et al. A knowledge-based system for consultation about blood coagulation studies. In: Gabriele TG (ed). The Human Side of Computers in Medicine. Proc Soc for Computer Med. 10th Annual Conf. San Diego: 1980:5.

    Google Scholar 

  • MacKinnon G, Waller W. Using databases. Healthc Inform. 1993;10:34–40.

    PubMed  CAS  Google Scholar 

  • Maronde RF, Lee PV, McCarron MM, Seibert S. A study of prescribing patterns. Med Care. 1971;9:383–95.

    Article  PubMed  CAS  Google Scholar 

  • Maronde RF, Rho J, Rucker TD. Monitoring for drug reactions including mutations, in outpatients. In: Ducrot H, Goldberg M, Hoigne R, Middleton P. (eds). Computer aid to drug therapy and to drug monitoring. Proc IFIP Working Conference. New York: North-Holland Pub Co; 1978:63–8.

    Google Scholar 

  • McColligan E, Blum B, Brunn C. An automated medical record system for ambulatory care. In: Kaplan B, Jelovsek FR (eds). Proc SCM/SAMS Joint Conf on Ambulatory Med. 1981:72–6.

    Google Scholar 

  • McDonald CJ. Introduction. In: Action-oriented decisions in ambulatory medicine. New York: Year Book Publishers; 1981. p. 1–14.

    Google Scholar 

  • McDonald CJ. Standards for the transmission of diagnostic results from laboratory computers to office practice computers – An initiative. Proc SCAMC. 1983:123–24.

    Google Scholar 

  • McDonald CJ, Hammond WE. Standard formats for electronic transfer of clinical data. Editorial. Ann Intern Med. 1989;110:333–5.

    PubMed  CAS  Google Scholar 

  • McDonald CJ, Wilson G, Blevins L, et al. The Regenstrief medical record system. Proc SCAMC. 1977a:168–69.

    Google Scholar 

  • McDonald CJ, Murray M, Jeris D, et al. A computer-based record and clinical monitoring system for ambulatory care. Am J Public Health. 1977b;67:240–5.

    Article  PubMed  CAS  Google Scholar 

  • McDonald CJ, Blevens L, Glazener T, et al. Data base management, feedback conrol and the Regenstrief medical record. Proc SCAMC. 1982:52–60.

    Google Scholar 

  • McDonald C, Wiederhold G, Simborg DW, et al. A discussion of the draft proposal for data exchange standards. Proc IEEE. 1984:406–13.

    Google Scholar 

  • McDonald CJ, Hui SL, Smith DM, et al. Reminders to physicians from an introspective computer medical record. Ann Intern Med. 1984b;100:130–8.

    PubMed  CAS  Google Scholar 

  • McDonald CJ, Blevins L, Tierney WM, Martin DK. The Regenstrief medical records. MD Comput. 1988;5:34–47.

    PubMed  CAS  Google Scholar 

  • McDonald CJ, Overhage JM, Tierney WM, et al. The Regenstrief Medical Record Experience: a quarter century experience. Int J Med Inform. 1999;54:225–53.

    Article  PubMed  CAS  Google Scholar 

  • McHugh M. Functional specifications for an automated nursing record. In: Ball MJ, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992. p. 16–29.

    Google Scholar 

  • McMullin ST, Reichley RM, Kahn MG, et al. Automated system for identifying potential dosage problems at a large university hospital. Am J Health Syst Pharm. 1997;54:545–9.

    PubMed  CAS  Google Scholar 

  • McMullin ST, Reichley RM, Watson LA, et al. Impact of a Web-based clinical information system on cisapride drug interactions and patient safety. Arch Intern Med. 1999;159:2077–82.

    Article  PubMed  CAS  Google Scholar 

  • Melmon KM. Preventable drug reactions – causes and cures. N Engl J Med. 1971;284:1361–8.

    Article  PubMed  CAS  Google Scholar 

  • Mestrovich MJ. Defense medical systems support support center fact book. Falls Church: DMSSC; 1988.

    Google Scholar 

  • Meystre SM, Haug PJ. Comparing natural language processing tools to extract medical problems from narrative text. Proc AMIA Annu Symp. 2005:525–9.

    Google Scholar 

  • Meystre S, Haug PJ. Medical problem and document model for natural language understanding. Proc AMIA Ann Symp. 2003:455–59.

    Google Scholar 

  • Michalski RS, Baskin AB, Spackman KA. A logic-based approach to conceptual database analysis. Proc SCAMC. 1982:792–6.

    Google Scholar 

  • Miller RR. Drug surveillance utilizing epidemiologic methods: a report from the Boston collaborative drug surveillance program. Am J Hosp Pharm. 1973;30:584–92.

    PubMed  CAS  Google Scholar 

  • Miller JE, Reichley RM, McNamee LA, et al. Notification of real-time clinical alerts generated by pharmacy expert systems. Proc AMIA Symp. 1999:325–9.

    Google Scholar 

  • Monane M, Matthias DM, Nagle BE, Kelly MA. Improving prescribing patterns for the elderly through an online drug utilization review intervention. JAMA. 1998;280:1249–52.

    Article  PubMed  CAS  Google Scholar 

  • Monmouth medical shapes a total system. Systems. 1966(Sep):12–48.

    Google Scholar 

  • Moorman PW, Schuemie MJ, van der Lei J. An inventory of publications on electronic medical records revisited. Methods Inf Med. 2009;48:454–8.

    Article  PubMed  CAS  Google Scholar 

  • Morrell J, Podlone M, Cohen SN. Receptivity of physicians in a teaching hospital to a computerized drug interaction monitoring and reporting system. Med Care. 1977;15:68–78.

    Article  PubMed  CAS  Google Scholar 

  • Morrison FP, Sengupta S, Hripsak G. Using a pipeline to improve de-identification performance. Proc AMIA. 2009:447–51.

    Google Scholar 

  • Myers RS, Slee VN. Medical statistics tell the story at a glance. Mod Hosp. 1959;93:72–5.

    PubMed  CAS  Google Scholar 

  • Niland JC, Rouse L, et al. Clinical research needs. In: Lehman HP, Abbott PA, Roderer NK, editors. Aspects of electronic health record systems. New York: Springer; 2006. p. 31–46.

    Google Scholar 

  • Palacio C, Harrison JP, Garets D. Benchmarking electronic medical records initiatives in the US: a conceptual model. J Med Syst. 2010;34:273–9.

    Article  PubMed  Google Scholar 

  • Payne TH, Savarino J, Marshall R, et al. Use of a clinical event monitor to prevent and detect medication errors. Proc AMIA Symp. 2000:640–4.

    Google Scholar 

  • Porter J, Jick H. Drug-related deaths among medical inpatients. JAMA. 1977;237:879–81.

    Article  PubMed  CAS  Google Scholar 

  • Pratt AW. Progress towards a medical information system for the research environment. In: Fuchs G, Wagner G, editors. Sonderdruck aus Krankenhaus-Informationsysteme. New York: Schattauer-Verlag; 1972. p. 319–36.

    Google Scholar 

  • Pryor DB, Stead WW, Hammond WE, et al. Features of TMR for a successful clinical and research database. Proc SCAMC. 1982:79–84.

    Google Scholar 

  • Pryor TA, Gardner RM, Clayton PD, Warner HR. The HELP system. J Med Syst. 1983;7:87–102.

    Article  PubMed  CAS  Google Scholar 

  • Pryor DB, Califf RM, Harrell FE, et al. Clinical data bases: accomplishments and unrealized potential. Med Care. 1985;23:623–47.

    Article  PubMed  CAS  Google Scholar 

  • Raschke RA, Gollihare B, Wunderlich TA, et al. A computer alert system to prevent injury from adverse drug events. JAMA. 1998;280:1317–20.

    Article  PubMed  CAS  Google Scholar 

  • Rind DM, Davis R, Safran C. Designing studies of computer-based alerts and reminders. MD Comput. 1995;12:122–6.

    PubMed  CAS  Google Scholar 

  • Runck HM. Computer planning for hospitals: the large scale education and involvement of employees. Comput Automation. 1969(Jun):33–5.

    Google Scholar 

  • Ruskin A. Storage and retrieval of adverse reaction data (and the international monitoring program). Proc 8th IBM Med Symp. Poughkeepsie: 1967:67–68.

    Google Scholar 

  • Safran C, Porter D. New uses of the large clinical data base at the Beth Israel Hospital in Boston: On-line searching by clinicians. Proc SCAMC. 1986:114–9.

    Google Scholar 

  • Salwen M, Wallach J. Interpretive analysis of hematologic data using a combination of decision making techniques. Proc MEDCOMP 82. Los Angeles: IEEE; 1982:428–9.

    Google Scholar 

  • Schenthal JE, Sweeney JW, Nettleton W. Clinical applications in large scale electronic data processing apparatus. I. New concepts in clinical use of electronic digital computers. J Am Med Assoc. 1960;173:6–11.

    Article  PubMed  CAS  Google Scholar 

  • Schenthal JE, Sweeney JW, Nettleton W. Clinical applications in large scale electronic data processing apparatus. II. New methodology in clinical record storage. JAMA. 1961;178:267–70.

    Article  PubMed  CAS  Google Scholar 

  • Schiff GD, Bates DW. Can electronic clinical documentation help prevent diagnostic errors. N Engl J Med. 2010;362:1066–9.

    Article  PubMed  CAS  Google Scholar 

  • Schultz JR, Davis L. The technology of PROMIS. Proc IEEE. 1979;67:1237–44.

    Google Scholar 

  • Selby JV. Linking automated databases for research in managed care settings. Ann Intern Med. 1997;127:719–24.

    PubMed  CAS  Google Scholar 

  • Shapiro S, Slone D, Lewis GP, Jick H. Fatal drug reactions among medical inpatients. JAMA. 1971;216:467–72.

    Article  PubMed  CAS  Google Scholar 

  • Shatin D, Drinkard C, Stergachis A. United Health Group. In: Strom BL, editor. Pharmacoepidemiology. 3rd ed. New York: Wiley; 2000. p. 295–305.

    Chapter  Google Scholar 

  • Shieman BM. Medical information system – El Camino Hospital. IMS Ind Med Surg. 1971;40:25–6.

    PubMed  CAS  Google Scholar 

  • Shortliffe EH, Tang PC, Amatayakul MK, et al. Future vision and dissemination of computer-based patient records. In: Ball MF, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992. p. 273–93.

    Google Scholar 

  • Siegel SJ. Developing an information system for a hospital. Public Health Rep. 1968;83:359–62.

    Article  PubMed  CAS  Google Scholar 

  • Slack W. The soul of a new system. Mass Med. 1987 (Nov-Dec):245–28.

    Google Scholar 

  • Slack WV, Bleich HL. The CCC system in two teaching hospitals: a progress report. Int J Med Inform. 1999;54:183–96.

    Article  PubMed  CAS  Google Scholar 

  • Sloane D, Jick H, Borda I, et al. Drug surveillance using nurse monitors. Lancet. 1966;2:901–3.

    Article  Google Scholar 

  • Smith JW. A hospital adverse drug reaction reporting program. Hospitals. 1966;40:90–6.

    PubMed  CAS  Google Scholar 

  • Smith JW, Seidl LG, Cluff LE. Studies on the epidemiology of adverse drug reactions: V. Clinical factors influencing susceptibility. Ann Intern Med. 1966;65:629–40.

    PubMed  CAS  Google Scholar 

  • Smith JW, Speicher CE, Chandrasekaran B. Expert systems as aids for interpretive reporting. J Med Syst. 1984;8:373–88.

    Article  PubMed  Google Scholar 

  • Sneider RM. Using a medical information system to improve the quality of care. Proc SCAMC. 1978:594–7.

    Google Scholar 

  • Speedie SM, Palumbo FB, Knapp DA, Beardsley R. Evaluating physician decision making: a rule-based system for drug prescribing review. Proc MEDCOMP. 1982:404–8.

    Google Scholar 

  • Speedie SM, Skarupa S, Blaschke TF, et al. An expert system that monitors for adverse drug reactions and suboptimal therapy. Proc AAMSI Symp. 1987:149–53.

    Google Scholar 

  • Speicher CE, Smith JW. Interpretive reporting in clinical pathology. JAMA. 1980;243:1556–60.

    Article  PubMed  CAS  Google Scholar 

  • Speicher CE, Smith JW. Communication between laboratory and clinician: test requests and interpretive reports. In: Choosing effective laboratory tests. Philadelphia: W. B. Saunders; 1983.p. 93–108.

    Google Scholar 

  • Spring T. Good-bye to privacy? PCWorld. 2010;28:10–2.

    Google Scholar 

  • Stead WW. Using computers to care for patients with renal disorders. MD Comput. 1984;1:42–50.

    PubMed  CAS  Google Scholar 

  • Stead WW. A quarter-century of computer-based medical records. MD Comput. 1989;6:74–81.

    PubMed  CAS  Google Scholar 

  • Stead WW, Hammond WE. Computer-based medical records: the centerpiece of TMR. MD Comput. 1988;5:48–62.

    PubMed  CAS  Google Scholar 

  • Stead WW, Wiederhold G, Gardner R, et al. Database systems for computer-based patient records. In: Ball MJ, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992.

    Google Scholar 

  • Strom BL, editor. Pharmacoepidemiology. 3rd ed. New York: Wiley; 2000.

    Google Scholar 

  • Tagasuki S. Lindberg DAB, Goldman D, DeLand LC. Information content of clinical blood chemistry data. Proc MEDINFO 1980:432–5.

    Google Scholar 

  • Teich JM, Glaser JP, Beckley RF, et al. The Brigham integrated computing system (BICS). Int J Med Inform. 1999;54:197–208.

    Article  PubMed  CAS  Google Scholar 

  • Terdiman J, Sandberg A, Tuttle R, Yanov J. Microcomputer-based distributed data processing systems for medical applications. Proc MEDIS ’78. Osaka: 1978:508–11.

    Google Scholar 

  • Tierney WM, McDonald CJ. Practice databases and their uses in clinical research. Stat Med. 1991;10:541–57.

    Article  PubMed  CAS  Google Scholar 

  • Timson G. The file manager system. Proc SCAMC. 1980:1645–9.

    Google Scholar 

  • Tolchin SG, Barta W. Local network and distributed processing issues in the Johns Hopkins Hospital. J Med Syst. 1986;10:339–53.

    Article  PubMed  CAS  Google Scholar 

  • Vallbona C, Spencer WA. Texas institute for research and Rehabilitation Hospital Computer System (Houston). In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 622–700.

    Google Scholar 

  • Vallbona C, Spencer WA, Moffet CL, et al. The patient centered information system of the Texas Institute for Rehabilitation and Research. Proc SAMS. 1973:232–60.

    Google Scholar 

  • Visconti JA, Smith MC. The role of hospital personnel in reporting adverse drug reactions. Am J Hosp Pharm. 1967;24:273–5.

    PubMed  CAS  Google Scholar 

  • Walker AM, Cody RJ, Greenblatt DJ, Jick H. Drug toxicity in patients receiving digoxin and quinidine. Am Heart J. 1983;105:1025–8.

    Article  PubMed  CAS  Google Scholar 

  • Warner HR. A computer based information system for patient care. In: Bekey GA, Schwartz MD, editors. Hospital information systems. New York: Marcel Dekker; 1972. p. 293–332.

    Google Scholar 

  • Warner HR. History of medical informatics at Utah. In: Blum BI, Duncan K, editors. A history of medical informatics. New York: Addison-Wesley Pub. Co; 1990. p. 357–66.

    Google Scholar 

  • Warner HR. Patient Data File. In: Computer-assisted medical decision-making. New York: Academic Press; 1979. p. 102–23.

    Google Scholar 

  • Warner HR, Morgan JD, Pryor TA, et al. HELP – A self-improving system for medical decision making. Proc MEDINFO. 1974:989–93.

    Google Scholar 

  • Watson RJ. A large-scale professionally oriented medical information system – five years later. J Med Syst. 1977;1:3–21.

    Article  PubMed  CAS  Google Scholar 

  • Weed LL. Medical records, medical education, and patient care: the problem-oriented record as a basis tool. Chicago: Year Book Pub; 1969.

    Google Scholar 

  • Weed LL, Hertz RY. The use and construction of knowledge couplers, the knowledge coupler editor, knowledge networks, and the problem-oriented medical record for the microcomputer. Proc SCAMC. 1983:831–6.

    Google Scholar 

  • Wheeler PS, Simborg DW, Gitlin JN. The Johns Hopkins radiology reporting system. Radiology. 1976;119:315–9.

    PubMed  CAS  Google Scholar 

  • Wiederhold G. Summary of the findings of the visiting study team automated medical record systems for ambulatory care: visit to Duke University Medical Center. CDD-5, HRA Contract, June 29, 1975.

    Google Scholar 

  • Wynden R. Providing a high security environment for the integrated data repository. Proc AMIA STB. 2010:123.

    Google Scholar 

  • Wynden R, Weiner MG, Sim I, et al. Ontology mapping and data discovery for the translational investigator. Proc AMIA STB. 2010:66–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Collen, M.F. (2012). Primary Medical Record Databases. In: Computer Medical Databases. Health Informatics. Springer, London. https://doi.org/10.1007/978-0-85729-962-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-962-8_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-961-1

  • Online ISBN: 978-0-85729-962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics