Skip to main content

Methods to Predict Hydrate Formation Conditions and Formation Rate

  • Chapter
  • First Online:
Gas Hydrates

Part of the book series: Green Energy and Technology ((GREEN))

  • 2065 Accesses

Abstract

The fourth chapter presents the reader with the various methods to predict hydrate formation conditions. It includes the simplest hand calculation methods to more sophisticated computer-based models. Hydrate formation kinetics (how fast hydrates form) are also discussed. Different models which describe the rate of hydrate formation are shown along with the thermodynamic driving force used in each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson BJ, Bazant MZ, Tester JW, Trout BL (2005) Application of the cell potential method to predict phase equilibria of multi-component gas hydrate systems. J Phys Chem B 109(16):8153–8163

    Article  Google Scholar 

  2. Baillie C, Wichert E (1987) Chart gives hydrate formation temperature for natural gas. Oil Gas J 85(4):37–39

    Google Scholar 

  3. Ballard AL, Sloan ED (2002) The next generation of hydrate prediction: an overview. J Supramol Chem 2(4–5):385–392

    Article  Google Scholar 

  4. Carroll J (2009) Natural gas hydrates, 2nd edn. Gulf Professional Publishing-Elsevier, Amsterdam

    Google Scholar 

  5. Englezos P, Kalogerakis NE, Dholabhai PD, Bishnoi PR (1987) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42:2647–2658

    Article  Google Scholar 

  6. Herri JM, Gruy F, Pic JS et al (1999) Interest of in situ turbidimetry for the characterization of methane hydrate crystallization: application to the study of kinetic inhibitors. Chem Eng Sci 54(12):1849–1858

    Article  Google Scholar 

  7. Jones AG, Hostomasky J, Zhou L (1992) On the effect of liquid mixing rate on primary crystal size during the gas-liquid precipitation of calcium carbonate. Chem Eng Sci 47(13–14):3817–3824

    Google Scholar 

  8. Kashchiev D, Firoozabadi A (2002) Nucleation of gas hydrates. J Cryst Growth 243(3–4):476–489

    Article  Google Scholar 

  9. Klauda JB, Sandler SI (2002) Ab initio intermolecular potentials for gas hydrates and their predictions. J Phys Chem B 106:5722–5732

    Article  Google Scholar 

  10. Natarajan V, Bishnoi PR, Kalogerakis K (1994) Induction phenomena in gas hydrate nucleation. Chem Eng Sci 49(13):2075–2087

    Article  Google Scholar 

  11. Ng H-J, Robinson DB (1977) The prediction of hydrate formation in condensed systems. AIChE J. doi:10.1002/aic.690230411

  12. Parrish WR, Prausnitz JM (1972) Dissociation pressure of gas hydrates formed by gas mixtures. Ind Eng Chem Process Dev 11(1):26–35

    Article  Google Scholar 

  13. Pedersen KS, Fredenslung A, Thomassen P (1989) Properties of oils and natural gases. Gulf Publishing Co, Houston

    Google Scholar 

  14. Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15(1):59–64

    Article  MATH  Google Scholar 

  15. Ribeiro CP Jr, Lage PC (2008) Modelling of hydrate formation kinetics: state of the art and future directions. Chem Eng Sci 63(8):2007–2034

    Article  Google Scholar 

  16. Skovborg P, Rasmussen P (1994) A mass transport limited model for the growth of methane and hydrates. Chem Eng Sci 49:1131–1143

    Article  Google Scholar 

  17. Skovborg P, Ng H-J, Rasmussen P, Mohn U (1993) Measurements of induction times for the formation of methane and ethane gas hydrates. Chem Eng Sci 48(3):445–453

    Article  Google Scholar 

  18. Sloan ED, Koh CA (2008) Clathrate hydrates of natural gases, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  19. Soave G (1992) Equilibrium constants from a modified Reidlich-Kwong equation of state. Chem Eng Sci 27(6):1197–1203

    Google Scholar 

  20. van der Waals JH, Platteeuw JC (1959) Clathrate solutions. Adv Chem Phys. doi:10.1002/9780470143483.ch1

  21. Vysniauscas A, Bishnoi PR (1983) Kinetic study of methane hydrate formation. Chem Eng Sci 38(7):1061–1072

    Article  Google Scholar 

  22. Wilcox WI, Carson DB, Katz DL (1941) Natural gas hydrates. Ind Eng Chem 33:662–672

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Hester .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Giavarini, C., Hester, K. (2011). Methods to Predict Hydrate Formation Conditions and Formation Rate. In: Gas Hydrates. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-956-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-956-7_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-955-0

  • Online ISBN: 978-0-85729-956-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics