Etiopathogenic Role of B Cells in Primary Sjögren’s Syndrome

  • Jacques-Olivier Pers
  • Sophie Hillion
  • Gabriel Tobón
  • Valérie Devauchelle
  • Alain Saraux
  • Pierre Youinou


T cells have long dominated the debate on the type of lymphocytes favoring the development of Sjögren’s syndrome (SjS), but in recent years it has become apparent that B cells are also a major contributor to autoimmunity. Beyond the paradigm that T lymphocytes exert control over B lymphocytes, it is now recognized that B cells solicit their own help from T cells, release a flurry of cytokines, and serve as antigen-presenting cells. In SjS, excess of the B-cell activating factor (BAFF) promotes quantitative B-cell anomalies that include an increase in the number of mature B (Bm)2/Bm2’ cells in the circulation and the accumulation of transitional, type 2 marginal zone (MZ) and memory B cells in the target tissues. B cells from SjS patients also display qualitative inconsistencies, such as an abundant local synthesis of BAFF and a default in the mechanism that discards the autoantibody-making B cells within ectopic germinal centers or MZ B-cell aggregates. In short, it is abundantly clear that B cells are involved in the pathogenesis of SjS. Moreover, B-cell-directed treatments have already shown substantial benefits in some SjS subsets.


Systemic Lupus Erythematosus Salivary Gland Treg Cell Germinal Center Marginal Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Geneviève Michel and Simone Forest for cheerful and expert secretarial assistance.


  1. 1.
    Moutsopoulos HM. Sjögren’s syndrome: autoimmune epithelitis. Clin Immunol Immunopathol. 1994;72:162–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Delaleu N, Jonsson R, Koller MM. Sjögren’s syndrome. Eur J Oral Sci. 2005;113:101–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Youinou P, Pers JO, Saraux A, Pennec YL. Viruses contribute to the development of Sjögren’s syndrome. Clin Exp Immunol. 2005;141:19–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Forsblad-d’Elia H, Carlsten H, Labrie F, Konttinen YT, Ohlsson C. Low serum levels of steroids are associated with disease characteristics in primary Sjögren’s syndrome. Supplementation with DHA restores the concentrations. J Clin Endocrinol Metab. 2009;94:2044–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Anaya JM, Delgado-Vega AM, Castiblanco J. Genetic basis of Sjögren’s syndrome. How strong is the evidence? Clin Dev Immunol. 2006;13:209–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Adamson 3rd TC, Fox RI, Frisman DM, Howell FV. Immunohistologic analysis of lymphoid infiltrates in primary Sjögren’s syndrome using monoclonal antibodies. J Immunol. 1983;130:203–8.PubMedGoogle Scholar
  7. 7.
    Lentz VM, Manser T. Cutting edge: germinal centers can be induced in the absence of T cells. J Immunol. 2001;167:15–20.PubMedGoogle Scholar
  8. 8.
    Christodoulou MI, Kapsogeorgou EK, Moutsopoulos NM, Moutsopoulos HM. Foxp3+ T-regulatory cells in Sjögren’s syndrome: correlation with the grade of the autoimmune lesion and certain adverse prognostic factors. Am J Pathol. 2008;173:1389–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Gottenberg JE, Lavie F, Abbed K, Gasnault J, Le Nevot E, Delfraissy JF, et al. CD4 CD25 high regulatory T cells are not impaired in patients with primary Sjögren’s syndrome. J Autoimmun. 2005;24:235–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Schmidlin H, Diehl SA, Blom B. New insights into the regulation of human B-cell differentiation. Trends Immunol. 2009;30:277–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Hoheisel JD. Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet. 2006;7:200–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Baldini C, Giusti L, Bazzichi L, Lucacchini A, Bombardieri S. Proteomic analysis of the saliva: a clue for understanding primary from secondary Sjögren’s syndrome? Autoimmun Rev. 2008;7:185–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Mackay F, Schneider P, Rennert P, Browning J. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. J Autoimmun. 2009;34(4):400–7 [Epub ahead of print].PubMedCrossRefGoogle Scholar
  15. 15.
    Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, et al. DCs induce CD40-independent Ig class switching through BLyS and APRIL. Nat Immunol. 2002;3:822–9.PubMedCrossRefGoogle Scholar
  16. 16.
    William J, Euler C, Christensen S, Shlomchik MJ. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science. 2002;297:2066–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee J, Kuchen S, Fischer R, Chang S, Lipsky PE. Identification and characterization of a human CD5+ pre-naive B cell population. J Immunol. 2009;182:4116–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE. Identification and characterization of circulating human transitional B cells. Blood. 2005;105:4390–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Paus D, Phan TG, Chan TD, Gardam S, Basten A, Brink R. Antigen recognition strength regulates the choice extrafollicular plasma cell and germinal center B cell differentiation. J Exp Med. 2006;203:1081–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Batten M, Fletcher C, Ng LG, Groom J, Wheway J, Laâbi Y, et al. TNF deficiency fails to protect BAFF transgenic mice against autoimmunity and reveals a predisposition to B cell lymphoma. J Immunol. 2004;172:812–22.PubMedGoogle Scholar
  21. 21.
    Le Pottier L, Devauchelle V, Fautrel A, Daridon C, Saraux A, Youinou P, et al. Ectopic ­germinal centers are rare in Sjögren’s syndrome salivary glands and do not exclude autoreactive B cells. J Immunol. 2009;182:3540–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM, et al. Reciprocal regulation of polarized cytokine production by B and T cells. Nat Immunol. 2000;1:475–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Daridon C, Guerrier T, Devauchelle V, Saraux A, Pers JO, Youinou P. Polarization of B effector cells in Sjögren’s syndrome. Autoimmun Rev. 2007;6:427–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Kolkowski EC, Reth P, Pelusa F, Bosch J, Pujol-Borrell R, Coll J, et al. Th1 predominance and perforin expression in minor salivary glands from patients with primary Sjögren’s syndrome. J Autoimmun. 1999;13:155–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Harris DP, Goodrich S, Gerth AJ, Peng SL, Lund FE. Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol. 2005;174:6781–90.PubMedGoogle Scholar
  26. 26.
    Mitsias DI, Tzioufas AG, Veiopoulou C, Zintzaras E, Tassios IK, Kogopoulou O, et al. The Th1/Th2 cytokine balance changes with the progress of the immunopathological lesion of Sjögren’s syndrome. Clin Exp Immunol. 2002;128:562–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Mackay F, Silveira PA, Brink R. B cells and the BAFF/APRIL axis: fast-forward on autoimmunity and signaling. Curr Opin Immunol. 2007;19:327–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9:491–502.PubMedCrossRefGoogle Scholar
  29. 29.
    Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med. 1999;190:1697–710.PubMedCrossRefGoogle Scholar
  30. 30.
    Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J Clin Invest. 2002;109:59–68.PubMedGoogle Scholar
  31. 31.
    Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, Zhou T, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann Rheum Dis. 2003;62:168–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Pers JO, Arbonneau F, Devauchelle-Pensec V, Saraux A, Pennec YL, Youinou P. Is periodontal disease mediated by salivary BAFF in Sjögren’s syndrome? Arthritis Rheum. 2005;52:2411–4.PubMedCrossRefGoogle Scholar
  33. 33.
    d’Arbonneau F, Pers JO, Devauchelle V, Pennec Y, Saraux A, Youinou P. BAFF-induced changes in B cell antigen receptor-containing lipid rafts in Sjögren’s syndrome. Arthritis Rheum. 2006;54:115–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang J, Roschke V, Baker KP, Wang Z, Alarcón GS, Fessler BJ, et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol. 2001;166:6–10.PubMedGoogle Scholar
  35. 35.
    Cheema GS, Roschke V, Hilbert DM, Stohl W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 2001;44:1313–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Pers JO, Daridon C, Devauchelle V, Jousse S, Saraux A, Jamin C, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci. 2005;1050:34–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 2006;54:192–201.PubMedCrossRefGoogle Scholar
  38. 38.
    Collins CE, Gavin AL, Migone TS, Hilbert DM, Nemazee D, Stohl W. B lymphocyte stimulator (BLyS) isoforms in systemic lupus erythematosus: disease activity correlates better with blood leukocyte BLyS mRNA levels than with plasma BlyS protein levels. Arthritis Res Ther. 2006;8:R6.PubMedCrossRefGoogle Scholar
  39. 39.
    Le Pottier L, Bendaoud B, Renaudineau Y, Youinou P, Pers JO, Daridon C. New ELISA for B cell-activating factor. Clin Chem. 2009;55:1843–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Gavin AL, Aït-Azzouzene D, Ware CF, Nemazee D. DeltaBAFF, an alternate splice isoform that regulates receptor binding and biopresentation of the B cell survival cytokine, BAFF. J Biol Chem. 2003;278:38220–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Roschke V, Sosnovtseva S, Ward CD, Hong JS, Smith R, Albert V, et al. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J Immunol. 2002;169:4314–21.PubMedGoogle Scholar
  42. 42.
    Liu Y, Xu L, Opalka N, Kappler J, Shu HB, Zhang G. Crystal structure of sTALL-1 reveals a virus-like assembly of TNF family ligands. Cell. 2002;108:383–94.PubMedCrossRefGoogle Scholar
  43. 43.
    Katsifis GE, Rekka S, Moutsopoulos NM, Pillemer S, Wahl SM. Systemic and local IL-17 and linked cytokines associated with Sjögren’s syndrome immunopathogenesis. Am J Pathol. 2009;175:1167–77.PubMedCrossRefGoogle Scholar
  44. 44.
    Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont MC, Ranchin B, et al. IL-17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol. 2009;10:778–85.PubMedCrossRefGoogle Scholar
  45. 45.
    Tengnér P, Halse AK, Haga HJ, Jonsson R, Wahren-Herlenius M. Detection of anti-Ro/SjSA and anti-La/SjSB autoantibody-producing cells in salivary glands from patients with Sjögren’s syndrome. Arthritis Rheum. 1998;41:2238–48.PubMedCrossRefGoogle Scholar
  46. 46.
    Bendaoud B, Pennec YL, Lelong A, Le Noac’h JF, Magadur G, Jouquan J, et al. IgA-containing immune complexes in the circulation of patients with primary Sjögren’s syndrome. J Autoimmun. 1991;4:177–84.PubMedCrossRefGoogle Scholar
  47. 47.
    Sugai S, Konda S, Shoraski Y, Murayama T, Nishikawa T. Non-IgM monoclonal gammopathy in patients with Sjögren’s syndrome. Am J Med. 1980;68:861–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Tzioufas AG, Manoussakis MN, Costello R, Silis M, Papadopoulos NM, Moutsopoulos HM. Cryoglobulinemia in autoimmune rheumatic diseases. Evidence of circulating monoclonal cryoglobulins in patients with primary Sjögren’s syndrome. Arthritis Rheum. 1986;29:1098–104.PubMedCrossRefGoogle Scholar
  49. 49.
    Masaki Y, Sugai S. Lymphoproliferative disorders in Sjögren’s syndrome. Autoimmun Rev. 2004;3:175–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Fishleder A, Tubbs R, Hesse B, Levine H. Uniform detection of immunoglobulin-gene rearrangement in benign lymphoepithelial lesions. N Engl J Med. 1987;316:1118–21.PubMedCrossRefGoogle Scholar
  51. 51.
    Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, et al. Novel human transitional B cell populations revealed by B cell depletion therapy. J Immunol. 2009;182:5982–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Carsetti R, Rosado MM, Wardmann H. Peripheral development of B cells in mouse and man. Immunol Rev. 2004;197:179–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Smith SH, Cancro MP. Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J Immunol. 2003;170:5820–3.PubMedGoogle Scholar
  54. 54.
    Thien M, Phan TG, Gardam S, Amesbury M, Basten A, Mackay F, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity. 2004;20:785–98.PubMedCrossRefGoogle Scholar
  55. 55.
    Lesley R, Xu Y, Kalled SL, Hess DM, Schwab SR, Shu HB, et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity. 2004;20:441–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Weill JC, Weller S, Reynaud CA. Human marginal zone B cells. Annu Rev Immunol. 2009;27:267–85.PubMedCrossRefGoogle Scholar
  57. 57.
    Kouskoff V, Famiglietti S, Lacaud G, Lang P, Rider JE, Kay BK, et al. Antigens varying in affinity for the BCR induce differential B lymphocyte responses. J Exp Med. 1998;188:1453–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Schwickert TA, Alabyev B, Manser T, Nussenzweig MC. Germinal center reutilization by newly activated B cells. J Exp Med. 2009;206:2907–14.PubMedCrossRefGoogle Scholar
  59. 59.
    Daridon C, Pers JO, Devauchelle V, Martins-Carvalho C, Hutin P, Pennec YL, et al. Identification of transitional type II B cells in the salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum. 2006;54:2280–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Cappione 3rd A, Anolik JH, Pugh-Bernard A, Barnard J, Dutcher P, Silverman G, et al. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J Clin Invest. 2005;115:3205–16.PubMedCrossRefGoogle Scholar
  61. 61.
    Honjo T, Muramatsu M, Fagarasan S. AID: how does it aid antibody diversity? Immunity. 2004;20:659–68.PubMedCrossRefGoogle Scholar
  62. 62.
    Bombardieri M, Barone F, Humby F, Kelly S, McGurk M, Morgan P, et al. AID expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjögren’s syndrome. J Immunol. 2007;179:4929–38.PubMedGoogle Scholar
  63. 63.
    Pascual V, Liu YJ, Magalski A, de Bouteiller O, Banchereau J, Capra JD. Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med. 1994;180:329–39.PubMedCrossRefGoogle Scholar
  64. 64.
    Bohnhorst JØ, Bjørgan MB, Thoen JE, Natvig JB, Thompson KM. Bm1-Bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjögren’s syndrome. J Immunol. 2001;167:3610–8.PubMedGoogle Scholar
  65. 65.
    Hansen A, Gosemann M, Pruss A, Reiter K, Ruzickova S, Lipsky PE, et al. Abnormalities in peripheral B cell memory of patients with primary Sjögren’s syndrome. Arthritis Rheum. 2004;50:1897–908.PubMedCrossRefGoogle Scholar
  66. 66.
    Binard A, Le Pottier L, Devauchelle-Pensec V, Saraux A, Youinou P, Pers JO. Is the blood B-cell subset profile diagnostic for Sjögren syndrome? Ann Rheum Dis. 2009;68:1447–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria by the American-European Consensus Group. Ann Rheum Dis. 2002;61:554–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Brandtzaeg P, Johansen FE. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev. 2005;206:32–63.PubMedCrossRefGoogle Scholar
  69. 69.
    Bunim JJ, Talal N. The association of malignant lymphoma with Sjögren’s syndrome. Trans Assoc Am Physicians. 1963;76:45–56.Google Scholar
  70. 70.
    Talal N, Bunim JJ. The development of malignant lymphoma in the course of Sjögren’s syndrome. Am J Med. 1964;36:529–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Anderson LG, Talal N. The spectrum of benign to malignant lymphoproliferation in Sjögren’s syndrome. Clin Exp Immunol. 1972;10:199–221.PubMedGoogle Scholar
  72. 72.
    Jonsson R, Kroneld U, Bäckman K, Magnusson B, Tarkowski A. Progression of sialadenitis in Sjögren’s syndrome. Br J Rheumatol. 1993;32:578–81.PubMedCrossRefGoogle Scholar
  73. 73.
    Royer B, Cazals-Hatem D, Sibilia J, Agbalika F, Cayuela JM, Soussi T, et al. Lymphomas in patients with Sjogren’s syndrome are marginal zone B-cell neoplasms, arise in diverse extranodal and nodal sites, and are not associated with viruses. Blood. 1997;90:766–75.PubMedGoogle Scholar
  74. 74.
    Voulgarelis M, Dafni UG, Isenberg DA, Moutsopoulos HM. Malignant lymphoma in primary Sjögren’s syndrome: a multicenter, retrospective, clinical study by the European Concerted Action on Sjögren’s Syndrome. Arthritis Rheum. 1999;42:1765–72.PubMedCrossRefGoogle Scholar
  75. 75.
    Ioannidis JP, Vassiliou VA, Moutsopoulos HM. Long-term risk of mortality and lymphoproliferative disease and predictive classification of primary Sjögren’s syndrome. Arthritis Rheum. 2002;46:741–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Baimpa E, Dahabreh IJ, Voulgarelis M, Moutsopoulos HM. Hematologic manifestations and predictors of lymphoma development in primary Sjögren syndrome: clinical and pathophysiologic aspects. Medicine (Baltimore). 2009;88:284–93.CrossRefGoogle Scholar
  77. 77.
    Martin T, Weber JC, Levallois H, Labouret N, Soley A, Koenig S, et al. Salivary gland lymphomas in patients with Sjögren’s syndrome may frequently develop from rheumatoid factor B cells. Arthritis Rheum. 2000;43:908–16.PubMedCrossRefGoogle Scholar
  78. 78.
    Sfriso P, Oliviero F, Calabrese F, Miorin M, Facco M, Contri A, et al. Epithelial CXCR3-B regulates chemokines bioavailability in normal, but not in Sjögren’s syndrome, salivary glands. J Immunol. 2006;176:2581–9.PubMedGoogle Scholar
  79. 79.
    Amft N, Curnow SJ, Scheel-Toellner D, Devadas A, Oates J, Crocker J, et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren’s syndrome. Arthritis Rheum. 2001;44:2633–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Barone F, Bombardieri M, Manzo A, Blades MC, Morgan PR, Challacombe SJ, et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjögren’s syndrome. Arthritis Rheum. 2005;52:1773–84.PubMedCrossRefGoogle Scholar
  81. 81.
    Hansen A, Reiter K, Ziprian T, Jacobi A, Hoffmann A, Gosemann M, et al. Dysregulation of chemokine receptor expression and function by B cells of patients with primary Sjögren’s syndrome. Arthritis Rheum. 2005;52:2109–19.PubMedCrossRefGoogle Scholar
  82. 82.
    Dawson LJ, Stanbury J, Venn N, Hasdimir B, Rogers SN, Smith PM. Antimuscarinic antibodies in primary Sjögren’s syndrome reversibly inhibit the mechanism of fluid secretion by human submandibular salivary acinar cells. Arthritis Rheum. 2006;54:1165–73.PubMedCrossRefGoogle Scholar
  83. 83.
    Robinson CP, Brayer J, Yamachika S, Esch TR, Peck AB, Stewart CA, et al. Transfer of human serum IgG to nonobese diabetic Igmu null mice reveals a role for autoantibodies in the loss of secretory function of exocrine tissues in Sjögren’s syndrome. Proc Natl Acad Sci U S A. 1998;95:7538–43.PubMedCrossRefGoogle Scholar
  84. 84.
    Takemoto F, Katori H, Sawa N, Hoshino J, Suwabe T, Sogawa Y, et al. Induction of ­anti-carbonic-anhydrase-II antibody causes renal tubular acidosis in a mouse model of Sjogren’s syndrome. Nephron Physiol. 2007;106:63–8.CrossRefGoogle Scholar
  85. 85.
    Haneji N, Nakamura T, Takio K, Yanagi K, Higashiyama H, Saito I, et al. Identification of alpha-fodrin as a candidate autoantigen in primary Sjögren’s syndrome. Science. 1997;276:604–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Pijpe J, van Imhoff GW, Spijkervet FK, Roodenburg JL, Wolbink GJ, Mansour K, et al. Rituximab treatment in patients with primary Sjögren’s syndrome: an open-label phase II study. Arthritis Rheum. 2005;52:2740–50.PubMedCrossRefGoogle Scholar
  87. 87.
    Devauchelle-Pensec V, Pennec Y, Morvan J, Pers JO, Daridon C, Jousse-Joulin S, et al. Improvement of Sjögren’s syndrome after two infusions of rituximab. Arthritis Rheum. 2007;57:310–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Saraux A. The point on the ongoing B-cell depleting trials currently in progress over the world in primary Sjögren’s syndrome. Autoimmun Rev. 2010;9(9):609–14.PubMedCrossRefGoogle Scholar
  89. 89.
    Cinamon G, Matloubian M, Lesneski MJ, Xu Y, Low C, Lu T, et al. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat Immunol. 2004;5:713–20.PubMedCrossRefGoogle Scholar
  90. 90.
    Sekiguchi M, Iwasaki T, Kitano M, Kuno H, Hashimoto N, Kawahito Y, et al. Role of sphingosine 1-phosphate in the pathogenesis of Sjögren’s syndrome. J Immunol. 2008;180:1921–8.PubMedGoogle Scholar
  91. 91.
    Cinamon G, Zachariah MA, Lam OM, Foss Jr FW, Cyster JG. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol. 2008;9:54–62.PubMedCrossRefGoogle Scholar
  92. 92.
    Meier D, Bornmann C, Chappaz S, Schmutz S, Otten LA, Ceredig R, et al. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity. 2007;26:643–54.PubMedCrossRefGoogle Scholar
  93. 93.
    Basset C, Durand V, Jamin C, Clément J, Pennec Y, Youinou P, et al. Increased N-linked glycosylation leading to oversialylation of monomeric immunoglobulin A1 from patients with Sjögren’s syndrome. Scand J Immunol. 2000;51:300–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Basset C, Durand V, Mimassi N, Pennec YL, Youinou P, Dueymes M. Enhanced sialyltransferase activity in B lymphocytes from patients with primary Sjögren’s syndrome. Scand J Immunol. 2000;51:307–11.PubMedCrossRefGoogle Scholar
  95. 95.
    Basset C, Devauchelle V, Durand V, Jamin C, Pennec YL, Youinou P, et al. Glycosylation of immunoglobulin A influences its receptor binding. Scand J Immunol. 1999;50:572–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Nemazee D, Weigert M. Revising B cell receptors. J Exp Med. 2000;191:1813–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Daridon C, Devauchelle V, Hutin P, Le Berre R, Martins-Carvalho C, Bendaoud B, et al. Aberrant expression of BAFF by B lymphocytes infiltrating the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum. 2007;56:1134–44.PubMedCrossRefGoogle Scholar
  98. 98.
    Kusam S, Dent A. Common mechanisms for the regulation of B cell differentiation and transformation by the transcriptional repressor protein Bcl-6. Immunol Res. 2007;37:177–86.PubMedCrossRefGoogle Scholar
  99. 99.
    Pierce SK. Lipid rafts and B-cell activation. Nat Rev Immunol. 2002;2:96–105.PubMedCrossRefGoogle Scholar
  100. 100.
    Qian Y, Qin J, Cui G, Naramura M, Snow EC, Ware CF, et al. Act1, a negative regulator in CD40- and BAFF-mediated B cell survival. Immunity. 2004;21:575–87.PubMedCrossRefGoogle Scholar
  101. 101.
    Hase H, Kanno Y, Kojima M, Hasegawa K, Sakurai D, Kojima H, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood. 2004;103:2257–65.PubMedCrossRefGoogle Scholar
  102. 102.
    Ettinger R, Sims GP, Robbins R, Withers D, Fischer RT, Grammer AC, et al. IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells. J Immunol. 2007;178:2872–82.PubMedGoogle Scholar
  103. 103.
    Khan WN. B cell receptor and BAFF receptor signaling regulation of B cell homeostasis. J Immunol. 2009;183:3561–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Pers JO, Devauchelle V, Daridon C, Bendaoud B, Le Berre R, Bordron A, et al. BAFF-modulated repopulation of B lymphocytes in the blood and salivary glands of rituximab-treated patients with Sjögren’s syndrome. Arthritis Rheum. 2007;56:1464–77.PubMedCrossRefGoogle Scholar
  105. 105.
    Quartuccio L, Fabris M, Moretti M, Barone F, Bombardieri M, Rupolo M, et al. Resistance to rituximab therapy and local BAFF overexpression in Sjögren’s syndrome-related myoepithelial sialadenitis and low-grade parotid B-cell lymphoma. Open Rheumatol J. 2008;2:38–43.PubMedCrossRefGoogle Scholar
  106. 106.
    Ahuja A, Shupe J, Dunn R, Kashgarian M, Kehry MR, Shlomchik MJ. Depletion of B cells in murine lupus: efficacy and resistance. J Immunol. 2007;179:3351–61.PubMedGoogle Scholar
  107. 107.
    Jonsson MV, Szodoray P, Jellestad S, Jonsson R, Skarstein K. Association between circulating levels of the novel TNF family members APRIL and BAFF and lymphoid organization in primary Sjögren’s syndrome. J Clin Immunol. 2005;25:189–201.PubMedCrossRefGoogle Scholar
  108. 108.
    Fletcher CA, Sutherland AP, Groom JR, Batten ML, Ng LG, Gommerman J, et al. Development of nephritis but not sialadenitis in autoimmune-prone BAFF transgenic mice lacking marginal zone B cells. Eur J Immunol. 2006;36:2504–14.PubMedCrossRefGoogle Scholar
  109. 109.
    Edwards JC, Cambridge G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol. 2006;6:394–403.PubMedCrossRefGoogle Scholar
  110. 110.
    Blank M, Shoenfeld Y. B cell-targeted therapy in autoimmunity. J Autoimmun. 2007;28:62–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Ramos-Casals M, Brito-Zerón P. Emerging biological therapies in primary Sjögren’s syndrome. Rheumatology (Oxford). 2007;46:1389–96.CrossRefGoogle Scholar
  112. 112.
    Kalled SL. BAFF: a novel therapeutic target for autoimmunity. Curr Opin Investig Drugs. 2002;3:1005–10.PubMedGoogle Scholar
  113. 113.
    Dall’Era M, Chakravarty E, Wallace D, Genovese M, Weisman M, Kavanaugh A, et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with SLE: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 2007;56:4142–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Jacques-Olivier Pers
    • 1
  • Sophie Hillion
    • 1
  • Gabriel Tobón
    • 1
  • Valérie Devauchelle
    • 1
  • Alain Saraux
    • 1
  • Pierre Youinou
    • 1
    • 2
  1. 1.EA 2216 “Immunology and Pathology” and IFR 148 ScInBioSthe European University of Brittany and the University of Brest, and the Brest University Medical School HospitalBrestFrance
  2. 2.Laboratory of ImmunologyBrest University Medical School HospitalBrestFrance

Personalised recommendations