Genetics, Genomics, and Proteomics of Sjögren’s Syndrome

  • Christopher J. Lessard
  • John A. Ice
  • Jacen Maier-Moore
  • Courtney G. Montgomery
  • Hal Scofield
  • Kathy L. Moser


Dramatic advances in identifying the genetic basis of many human diseases are transforming our fundamental understanding of etiology and pathogenesis. Over the past decade, large global efforts to characterize sequence variation in the human genome have provided the foundation for this extraordinary progress. Success in mapping disease genes has also been fueled by revolutionary advances in our technical capacity for genotyping and analyzing complex genetic datasets. These advances include the technical capacity for genotyping millions of known variants and have ushered in a new era of powerful, large-scale, and highly successful genome screens for many diseases. Scanning the human genome for association of variants with disease is unbiased and not limited by prior selection of a putative candidate gene for testing. As a result, the genes that are associated with disease can be surprising, oftentimes linking previously unsuspected molecular pathways to numerous disease phenotypes. In many cases, an association may be located between genes and have no known or obvious functional effect. Thus, a dramatic shift in our knowledge of the genetic architecture of human disease is underway. Still, much remains to be learned.


Systemic Lupus Erythematosus Human Leukocyte Antigen Major Histocompatibility Complex Region Human Leukocyte Antigen Gene Salivary Gland Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Besana C, Salmaggi C, Pellegrino C, et al. Chronic bilateral dacryo-adenitis in identical twins: a possible incomplete form of Sjogren syndrome. Eur J Pediatr. 1991;150:652–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Bolstad AI, Haga HJ, Wassmuth R, et al. Monozygotic twins with primary Sjogren’s syndrome. J Rheumatol. 2000;27:2264–6.PubMedGoogle Scholar
  3. 3.
    Houghton KM, Cabral DA, Petty RE, et al. Primary Sjogren’s syndrome in dizygotic adolescent twins: one case with lymphocytic interstitial pneumonia. J Rheumatol. 2005;32:1603–6.PubMedGoogle Scholar
  4. 4.
    Scofield RH, Kurien BT, Reichlin M. Immunologically restricted and inhibitory anti-Ro/SSA in monozygotic twins. Lupus. 1997;6:395–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Cobb BL, Lessard CJ, Harley JB, et al. Genes and Sjogren’s syndrome. Rheum Dis Clin North Am. 2008;34:847–68. vii.PubMedCrossRefGoogle Scholar
  6. 6.
    Fox RP. Head and neck findings in systemic lupus erythematosus: Sjogren’s syndrome and the eye, ear, and larynx. Philadelphia: Lippencott, Williams, & Wilkins; 2008.Google Scholar
  7. 7.
    Baranzini SE. The genetics of autoimmune diseases: a networked perspective. Curr Opin Immunol. 2009;21:596–605.PubMedCrossRefGoogle Scholar
  8. 8.
    Deapen D, Escalante A, Weinrib L, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum. 1992;35:311–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Silman AJ, MacGregor AJ, Thomson W, et al. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br J Rheumatol. 1993;32:903–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Graham RR, Ortmann WA, Langefeld CD, et al. Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus. Am J Hum Genet. 2002;71:543–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Korman BD, Alba MI, Le JM, et al. Variant form of STAT4 is associated with primary Sjogren’s syndrome. Genes Immun. 2008;9:267–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Feero WG, Guttmacher AE, Collins FS. Genomic medicine – an updated primer. N Engl J Med. 2010;362:2001–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Durbin RM, Abecasis GR, Altshuler DL, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.CrossRefGoogle Scholar
  14. 14.
    The International HapMap Consortium. The International HapMap Project. Nature. 2003;426:789–96.CrossRefGoogle Scholar
  15. 15.
    Miceli-Richard C, Comets E, Loiseau P, et al. Association of an IRF5 gene functional polymorphism with Sjogren’s syndrome. Arthritis Rheum. 2007;56:3989–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Nordmark G, Kristjansdottir G, Theander E, et al. Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjogren’s syndrome. Genes Immun. 2009;10:68–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Nordmark G, Kristjansdottir G, Theander E, et al. Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjogren’s syndrome. Genes Immun. 2011;12(2):100–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature. 2005;434:243–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Taniguchi T, Ogasawara K, Takaoka A, et al. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001;19:623–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Demirci FY, Manzi S, Ramsey-Goldman R, et al. Association of a common interferon regulatory factor 5 (IRF5) variant with increased risk of systemic lupus erythematosus (SLE). Ann Hum Genet. 2007;71:308–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Graham RR, Kozyrev SV, Baechler EC, et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of ­systemic lupus erythematosus. Nat Genet. 2006;38:550–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Kelly JA, Kelley JM, Kaufman KM, et al. Interferon regulatory factor-5 is genetically associated with systemic lupus erythematosus in African Americans. Genes Immun. 2008;9:187–94.PubMedCrossRefGoogle Scholar
  23. 23.
    Kozyrev SV, Lewen S, Reddy PM, et al. Structural insertion/deletion variation in IRF5 is associated with a risk haplotype and defines the precise IRF5 isoforms expressed in systemic lupus erythematosus. Arthritis Rheum. 2007;56:1234–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Reddy MV, Velazquez-Cruz R, Baca V, et al. Genetic association of IRF5 with SLE in Mexicans: higher frequency of the risk haplotype and its homozygozity than Europeans. Hum Genet. 2007;121:721–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Shin HD, Sung YK, Choi CB, et al. Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population. Arthritis Res Ther. 2007;9:R32.PubMedCrossRefGoogle Scholar
  26. 26.
    Sigurdsson S, Nordmark G, Goring HH, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet. 2005;76:528–37.PubMedCrossRefGoogle Scholar
  27. 27.
    Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357:977–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Morinobu A, Gadina M, Strober W, et al. STAT4 serine phosphorylation is critical for IL-12-induced IFN-gamma production but not for cell proliferation. Proc Natl Acad Sci USA. 2002;99:12281–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Nishikomori R, Usui T, Wu CY, et al. Activated STAT4 has an essential role in Th1 differentiation and proliferation that is independent of its role in the maintenance of IL-12R beta 2 chain expression and signaling. J Immunol. 2002;169:4388–98.PubMedGoogle Scholar
  30. 30.
    Gottenberg JE, Cagnard N, Lucchesi C, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren’s syndrome. Proc Natl Acad Sci USA. 2006;103:2770–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Lefkowitz DL, Lefkowitz SS. Macrophage-neutrophil interaction: a paradigm for chronic inflammation revisited. Immunol Cell Biol. 2001;79:502–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Fox RI, Carstens SA, Fong S, et al. Use of monoclonal antibodies to analyze peripheral blood and salivary gland lymphocyte subsets in Sjogren’s syndrome. Arthritis Rheum. 1982;25:419–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Fox RI, Kang HI, Ando D, et al. Cytokine mRNA expression in salivary gland biopsies of Sjogren’s syndrome. J Immunol. 1994;152:5532–9.PubMedGoogle Scholar
  34. 34.
    McGeehan GM, Becherer JD, Bast Jr RC, et al. Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature. 1994;370:558–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Moutsopoulos HM, Hooks JJ, Chan CC, et al. HLA-DR expression by labial minor salivary gland tissues in Sjogren’s syndrome. Ann Rheum Dis. 1986;45:677–83.PubMedCrossRefGoogle Scholar
  36. 36.
    Perez P, Goicovich E, Alliende C, et al. Differential expression of matrix metalloproteinases in labial salivary glands of patients with primary Sjogren’s syndrome. Arthritis Rheum. 2000;43:2807–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu AJ, Lafrenie RM, Park C, et al. Modulation of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) by interferon-gamma in a human salivary gland cell line. J Cell Physiol. 1997;171:117–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Ogawa N, Dang H, Lazaridis K, et al. Analysis of transforming growth factor beta and other cytokines in autoimmune exocrinopathy (Sjogren’s syndrome). J Interferon Cytokine Res. 1995;15:759–67.PubMedCrossRefGoogle Scholar
  39. 39.
    The MHC sequencing consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature. 1999;401:921–3.CrossRefGoogle Scholar
  40. 40.
    Merriman TR, Todd JA. Genetics of autoimmune disease. Curr Opin Immunol. 1995;7:786–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Nepom GT. MHC and autoimmune diseases. Immunol Ser. 1993;59:143–64.PubMedGoogle Scholar
  42. 42.
    Bolstad AI, Jonsson R. Genetic aspects of Sjogren’s syndrome. Arthritis Res. 2002;4:353–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Harley JB, Reichlin M, Arnett FC, et al. Gene interaction at HLA-DQ enhances autoantibody production in primary Sjogren’s syndrome. Science. 1986;232:1145–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Gottenberg JE, Busson M, Loiseau P, et al. Association of transforming growth factor beta1 and tumor necrosis factor alpha polymorphisms with anti-SSB/La antibody secretion in patients with primary Sjogren’s syndrome. Arthritis Rheum. 2004;50:570–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Ito T, Wang YH, Duramad O, et al. OX40 ligand shuts down IL-10-producing regulatory T cells. Proc Natl Acad Sci USA. 2006;103:13138–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Ramos-Casals M, Font J. Primary Sjogren’s syndrome: current and emergent aetiopathogenic concepts. Rheumatology (Oxford). 2005;44:1354–67.CrossRefGoogle Scholar
  47. 47.
    Larsson A, Bredberg A, Henriksson G, et al. Immunohistochemistry of the B-cell component in lower lip salivary glands of Sjogren’s syndrome and healthy subjects. Scand J Immunol. 2005;61:98–107.PubMedCrossRefGoogle Scholar
  48. 48.
    Tengner P, Halse AK, Haga HJ, et al. Detection of anti-Ro/SSA and anti-La/SSB autoantibody-producing cells in salivary glands from patients with Sjogren’s syndrome. Arthritis Rheum. 1998;41:2238–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Groom J, Kalled SL, Cutler AH, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest. 2002;109:59–68.PubMedGoogle Scholar
  50. 50.
    Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren’s syndrome. Ann Rheum Dis. 2003;62:168–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Pers JO, Daridon C, Devauchelle V, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci. 2005;1050:34–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999;189:1747–56.PubMedCrossRefGoogle Scholar
  53. 53.
    Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol. 2002;2:465–75.PubMedCrossRefGoogle Scholar
  54. 54.
    Daridon C, Pers JO, Devauchelle V, et al. Identification of transitional type II B cells in the salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum. 2006;54:2280–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Nossent JC, Lester S, Zahra D, et al. Polymorphism in the 5′ regulatory region of the B-lymphocyte activating factor gene is associated with the Ro/La autoantibody response and serum BAFF levels in primary Sjogren’s syndrome. Rheumatology (Oxford). 2008;47:1311–6.CrossRefGoogle Scholar
  56. 56.
    Hjelmervik TO, Petersen K, Jonassen I, et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjogren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52:1534–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Perez P, Anaya JM, Aguilera S, et al. Gene expression and chromosomal location for susceptibility to Sjogren’s syndrome. J Autoimmun. 2009;33:99–108.PubMedCrossRefGoogle Scholar
  58. 58.
    Emamian ES, Leon JM, Lessard CJ, et al. Peripheral blood gene expression profiling in Sjogren’s syndrome. Genes Immun. 2009;10:285–96.PubMedCrossRefGoogle Scholar
  59. 59.
    Baechler EC, Gregersen PK, Behrens TW. The emerging role of interferon in human systemic lupus erythematosus. Curr Opin Immunol. 2004;16:801–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Sozzani S, Bosisio D, Scarsi M, et al. Type I interferons in systemic autoimmunity. Autoimmunity. 2010;43:196–203.PubMedCrossRefGoogle Scholar
  61. 61.
    Fleissig Y, Deutsch O, Reichenberg E, et al. Different proteomic protein patterns in saliva of Sjogren’s syndrome patients. Oral Dis. 2009;15:61–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Hu S, Wang J, Meijer J, et al. Salivary proteomic and genomic biomarkers for primary Sjogren’s syndrome. Arthritis Rheum. 2007;56:3588–600.PubMedCrossRefGoogle Scholar
  63. 63.
    Giusti L, Baldini C, Bazzichi L, et al. Proteome analysis of whole saliva: a new tool for rheumatic diseases – the example of Sjogren’s syndrome. Proteomics. 2007;7:1634–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Ryu OH, Atkinson JC, Hoehn GT, et al. Identification of parotid salivary biomarkers in Sjogren’s syndrome by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and two-dimensional difference gel electrophoresis. Rheumatology (Oxford). 2006;45:1077–86.CrossRefGoogle Scholar
  65. 65.
    Hjelmervik TO, Jonsson R, Bolstad AI. The minor salivary gland proteome in Sjogren’s syndrome. Oral Dis. 2009;15:342–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Christopher J. Lessard
    • 1
  • John A. Ice
    • 1
  • Jacen Maier-Moore
    • 1
  • Courtney G. Montgomery
    • 1
  • Hal Scofield
    • 1
  • Kathy L. Moser
    • 1
  1. 1.Arthritis and Clinical ImmunologyOklahoma Medical Research FoundationOklahoma CityUSA

Personalised recommendations