Advertisement

Anti-windup Compensator Synthesis

  • Sophie Tarbouriech
  • Germain Garcia
  • João Manoel Gomes da SilvaJr.
  • Isabelle Queinnec

Abstract

This chapter is concerned with the presentation of several constructive linear, and possibly nonlinear anti-windup techniques. This chapter is mainly devoted to anti-windup techniques based on LMI conditions, sometimes named direct linear anti-windup (DLAW) in the literature. Another approach, namely model recovery anti-windup (MRAW), is also evoked. Both approaches are described from an algorithmic point of view, in order to illustrate their main features. In this way, theoretical conditions ensuring stability and performance, their applicability, their accompanying guarantees, and their merits and deficiencies are briefly discussed. The associated possible extensions to less standard problem settings are also discussed.

Keywords

Disturbance Rejection Saturation Function Global Exponential Stability Model Recovery Direct Linear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 8.
    Anon: Why the grippen crashed. Aerospace Am. 11 (1994) Google Scholar
  2. 14.
    Barbu, C., Reginatto, R., Teel, A.R., Zaccarian, L.: Anti-windup for exponentially unstable linear systems with inputs limited in magnitude and rate. In: American Control Conference, Chicago, IL, June 2000 Google Scholar
  3. 18.
    Bemporad, A., Teel, A.R., Zaccarian, L.: Anti-windup synthesis via sampled-data piecewise affine optimal control. Automatica 40(4), 549–562 (2004) MathSciNetMATHCrossRefGoogle Scholar
  4. 21.
    Bender, F.A., Gomes da Silva Jr., J.M., Tarbouriech, S.: A convex framework for the design of dynamic anti-windup for state-delayed systems. In: American Control Conference, Baltimore, USA, pp. 6763–6768 (2010) Google Scholar
  5. 27.
    Biannic, J.-M., Tarbouriech, S.: Optimization and implementation of dynamic anti-windup compensators with multiple saturations in flight control systems. Control Eng. Pract. 17, 703–713 (2009) CrossRefGoogle Scholar
  6. 28.
    Biannic, J.-M., Tarbouriech, S., Farret, D.: A practical approach to performance analysis of saturated systems with application to fighter aircraft flight controllers. In: IFAC Symposium on Robust Control Design (ROCOND), Toulouse, France, July 2006 Google Scholar
  7. 29.
    Biannic, J.-M., Roos, C., Tarbouriech, S.: A practical method for fixed-order anti-windup design. In: IFAC Symposium on Nonlinear Control Systems (NOLCOS), Pretoria, South Africa (2007) Google Scholar
  8. 45.
    Boyd, S., El Ghaoui, L., Féron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1994) MATHGoogle Scholar
  9. 46.
    Brieger, O., Kerr, M., Leissling, D., Postlethwaite, I., Sofrony, J., Turner, M.C.: Anti-windup compensation of rate saturation in an experimental aircraft. In: American Control Conference, New York (2007) Google Scholar
  10. 56.
    Cao, Y.Y., Lin, Z., Ward, D.G.: An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation. IEEE Trans. Autom. Control 47(1), 140–145 (2002) MathSciNetCrossRefGoogle Scholar
  11. 57.
    Cao, Y.Y., Lin, Z., Chen, B.M.: An output feedback h controller for linear systems subject to sensor nonlinearities. IEEE Trans. Circuits Syst. I 50(7), 914–921 (2003) MathSciNetCrossRefGoogle Scholar
  12. 62.
    Castelan, E.B., Tarbouriech, S., Gomes da Silva Jr., J.M., Queinnec, I.: \(\mathcal{L}_{2}\)-stabilization of continuous-time systems with saturating actuators. Int. J. Robust Nonlinear Control 16, 935–944 (2006) MathSciNetMATHCrossRefGoogle Scholar
  13. 67.
    Chiasson, J., Loiseau, J.-J. (eds.): Applications of Time-Delay Systems. LNCIS, vol. 352. Springer, Berlin (2007) MATHGoogle Scholar
  14. 86.
    Duda, H.: Prediction of pilot-in-the-loop osciallations due to rate saturation. J. Guid. Control Dyn. 20(3), 581–587 (1997) MATHCrossRefGoogle Scholar
  15. 100.
    Gahinet, P., Apkarian, P.: A linear matrix inequality approach to \(\mathcal{H}_{\infty}\) control. Int. J. Robust Nonlinear Control 4, 421–448 (1994) MathSciNetMATHCrossRefGoogle Scholar
  16. 102.
    Galeani, S., Massimetti, M., Teel, A.R., Zaccarian, L.: Reduced order linear anti-windup augmentation for stable linear systems. Int. J. Syst. Sci. 37(2), 115–127 (2006) MathSciNetMATHCrossRefGoogle Scholar
  17. 103.
    Galeani, S., Onori, S., Teel, A.R., Zaccarian, L.: Further results on static linear anti-windup design for control systems subject to magnitude and rate saturation. In: Conference on Decision and Control, San Diego, CA, USA, December 2006 Google Scholar
  18. 104.
    Galeani, S., Onori, S., Teel, A.R., Zaccarian, L.: Regional, semiglobal, global nonlinear anti-windup via switching design. In: European Control Conference, Kos, Greece, pp. 5403–5410 (2007) Google Scholar
  19. 105.
    Galeani, S., Onori, S., Zaccarian, L.: Nonlinear scheduled control for linear systems subject to saturation with application to anti-windup control. In: Conference on Decision and Control, New Orleans, LA, USA, pp. 1168–1173 (2007) Google Scholar
  20. 106.
    Galeani, S., Teel, A.R., Zaccarian, L.: Constructive nonlinear anti-windup design for exponentially unstable linear plants. Syst. Control Lett. 56(5), 357–365 (2007) MathSciNetMATHCrossRefGoogle Scholar
  21. 107.
    Galeani, S., Onori, S., Teel, A.R., Zaccarian, L.: A magnitude and rate saturation model and its use in the solution of a static anti-windup problem. Syst. Control Lett. 57(1), 1–9 (2008) MathSciNetMATHCrossRefGoogle Scholar
  22. 108.
    Galeani, S., Tarbouriech, S., Turner, M.C., Zaccarian, L.: A tutorial on modern anti-windup design. Eur. J. Control 15(3–4), 418–440 (2009) MathSciNetCrossRefGoogle Scholar
  23. 119.
    Garcia, G., Tarbouriech, S., Gomes da Silva Jr., J.M.: Dynamic output controller design for linear systems with actuator and sensor saturation. In: American Control Conference, New York, USA, July 2007 Google Scholar
  24. 121.
    Gatley, S.L., Turner, M.C., Postlethwaite, I., Kumar, A.: A comparison of rate-limit compensation schemes for pilot-induced-oscillation avoidance. Aerosp. Sci. Technol. 10(1), 37–47 (2006) MATHCrossRefGoogle Scholar
  25. 124.
    Ghiggi, I., Bender, A., Gomes da Silva Jr., J.M.: Dynamic non-rational anti-windup for time-delay systems with saturating inputs. In: IFAC World Congress, Seoul, Korea (2008) Google Scholar
  26. 139.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Anti-windup design with guaranteed region of stability: an LMI-based approach. IEEE Trans. Autom. Control 50(1), 106–111 (2005) MathSciNetCrossRefGoogle Scholar
  27. 140.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Anti-windup design with guaranteed regions of stability for discrete-time linear systems. Syst. Control Lett. 55(3), 184–192 (2006) MathSciNetMATHCrossRefGoogle Scholar
  28. 144.
    Gomes da Silva Jr., J.M., Tarbouriech, S., Garcia, G.: Local stabilization of linear systems under amplitude and rate saturating actuators. IEEE Trans. Autom. Control 48(5), 842–847 (2003) MathSciNetCrossRefGoogle Scholar
  29. 145.
    Gomes da Silva Jr., J.M., Tarbouriech, S., Garcia, G.: Anti-windup design for time-delay systems subject to input saturation: an LMI-based approach. Eur. J. Control 6, 1–13 (2006) MathSciNetGoogle Scholar
  30. 148.
    Gomes da Silva Jr., J.M., Bender, F.A., Tarbouriech, S., Biannic, J.-M.: Dynamic anti-windup synthesis for state delayed systems: an LMI approach. In: Conference on Decision and Control, Shanghai, P.R. China (2009) Google Scholar
  31. 151.
    Grimm, G., Hatfield, J., Postlethwaite, I., Teel, A.R., Turner, M.C., Zaccarian, L.: Anti-windup for stable linear systems with input saturation: an LMI based synthesis. IEEE Trans. Autom. Control 48(9), 1509–1525 (2003) MathSciNetCrossRefGoogle Scholar
  32. 153.
    Grimm, G., Teel, A.R., Zaccarian, L.: Robust linear anti-windup synthesis for recovery of unconstrained performance. Int. J. Robust Nonlinear Control 14(13–14), 1133–1168 (2004) MathSciNetMATHCrossRefGoogle Scholar
  33. 154.
    Grimm, G., Teel, A.R., Zaccarian, L.: The \(\mathcal{L}_{2}\) anti-windup problem for discrete-time linear systems: definition and solutions. Syst. Control Lett. 57(4), 356–364 (2008) MathSciNetMATHCrossRefGoogle Scholar
  34. 155.
    Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Boston (2003) MATHCrossRefGoogle Scholar
  35. 162.
    Hanus, R.: Anti-windup and bumpless transfer: a survey. In: 12th IMACS World Congress, Paris, France, vol. 2, pp. 59–65 (1988) Google Scholar
  36. 178.
    Herrmann, G., Turner, M.C., Postlethwaite, I.: Practical implementation of a novel anti-windup scheme in a HDD-dual-stage servo-system. IEEE/ASME Trans. Mechatron. 9(3), 580–592 (2004) CrossRefGoogle Scholar
  37. 180.
    Herrmann, G., Turner, M.C., Menon, P.P., Bates, D.G., Postlethwaite, I.: Anti-windup synthesis for nonlinear dynamic inversion controllers. In: IFAC Symposium on Robust Control Design (ROCOND), Toulouse (2006) Google Scholar
  38. 181.
    Herrmann, G., Turner, M.C., Postlethwaite, I.: Discrete-time and sampled-data anti-windup synthesis: stability and performance. Int. J. Syst. Sci. 37(2), 91–113 (2006) MathSciNetMATHCrossRefGoogle Scholar
  39. 182.
    Herrmann, G., Turner, M.C., Postlethwaite, I.: Performance oriented anti-windup for a class of neural network controlled systems. IEEE Trans. Neural Netw. 18(2), 449–465 (2007) CrossRefGoogle Scholar
  40. 183.
    Hindi, H., Boyd, S.: Analysis of linear systems with saturation using convex optimization. In: Conference on Decision and Control, Tampa or, USA, pp. 903–908 (1998) Google Scholar
  41. 186.
    Howitt, J.: Application of non-linear dynamic inversion to rotorcraft flight control. In: Proceedings of the American Helicopter Society Conference (2005) Google Scholar
  42. 191.
    Hu, Q., Rangaiah, G.P.: Anti-windup schemes for uncertain nonlinear systems. IEE Proc., Control Theory Appl. 147(3), 321–329 (2000) CrossRefGoogle Scholar
  43. 195.
    Hu, T., Teel, A.R., Zaccarian, L.: Regional anti-windup compensation for linear systems with input saturation. In: American Control Conference, Portland, OR, pp. 3397–3402 (2005) Google Scholar
  44. 197.
    Hu, T., Teel, A.R., Zaccarian, L.: Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance. Automatica 64(2), 512–519 (2008) MathSciNetCrossRefGoogle Scholar
  45. 203.
    Johnson, E.N., Calise, A.J.: Limited authority flight control for reusable launch vehicles. AIAA J. Guid. Control Dyn. 26(6), 906–913 (2003) CrossRefGoogle Scholar
  46. 204.
    Kahveci, N.E., Ioanou, P.A., Mirmirani, M.D.: A robust adaptive control design for gliders subject to actuator saturation nonlinearities. In: American Control Conference, New York (2007) Google Scholar
  47. 206.
    Kaliora, G., Astolfi, A.: Nonlinear control of feedforward systems with bounded signals. IEEE Trans. Autom. Control 49(11), 1975–1990 (2004) MathSciNetCrossRefGoogle Scholar
  48. 208.
    Kapila, V., Grigoriadis, K. (eds.): Actuator Saturation Control. Dekker, New York (2002) Google Scholar
  49. 210.
    Kapoor, N., Daoutidis, P.: An observer based anti-windup scheme for nonlinear systems with input constraints. Int. J. Control 72(1), 18–29 (1999) MathSciNetMATHCrossRefGoogle Scholar
  50. 213.
    Kerr, M.L., Turner, M.C., Postlethwaite, I.: Practical approaches to low-order anti-windup compensator design: a flight control comparison. In: IFAC World Congress, Seoul, Korea (2008) Google Scholar
  51. 215.
    Khalil, H.K.: Nonlinear Systems. MacMillan, London (1992) MATHGoogle Scholar
  52. 222.
    Koplon, R.B., Hautus, M.L.J., Sontag, E.D.: Observability of linear systems with saturated outputs. Linear Algebra Appl. 205–206, 909–936 (1994) MathSciNetCrossRefGoogle Scholar
  53. 226.
    Kothare, M.V., Campo, P.J., Morari, M., Nett, C.N.: A unified framework for the study of anti-windup designs. Automatica 30(12), 1869–1883 (1994) MathSciNetMATHCrossRefGoogle Scholar
  54. 227.
    Kreisselmeier, G.: Stabilisation of linear systems in the presence of output measurement saturation. Syst. Control Lett. 29, 27–30 (1996) MathSciNetMATHCrossRefGoogle Scholar
  55. 239.
    Lin, Z.: Semi-global stabilisation of linear systems with position and rate-limited actuators. Syst. Control Lett. 30, 1–11 (1997) MATHCrossRefGoogle Scholar
  56. 241.
    Lin, Z., Hu, T.: Semi-global stabilisation of linear systems subject to output saturation. Syst. Control Lett. 43, 211–217 (2001) MathSciNetMATHCrossRefGoogle Scholar
  57. 257.
    Massimetti, M., Zaccarian, L., Hu, T., Teel, A.R.: LMI-based linear anti-windup for discrete time linear control systems. In: Conference on Decision and Control, San Diego, CA, USA, December, pp. 6173–6178 (2006) Google Scholar
  58. 260.
    Miller, R., Pachter, M.: Manual flight control with saturating actuators. IEEE Control Syst. 18(1), 10–19 (1998) MathSciNetCrossRefGoogle Scholar
  59. 266.
    Morabito, F., Teel, A.R., Zaccarian, L.: Nonlinear anti-windup applied to Euler-Lagrange systems. IEEE Trans. Robot. Autom. 20(3), 526–537 (2004) CrossRefGoogle Scholar
  60. 267.
    Morari, M., Zafiriou, E.: Robust Process Control. Prentice Hall, Englewood Cliffs (1989) Google Scholar
  61. 269.
    Mulder, E.F., Kothare, M.V., Morari, M.: Multivariable anti-windup controller synthesis using linear matrix inequalities. Automatica 37(9), 1407–1416 (2001) MATHCrossRefGoogle Scholar
  62. 273.
    Nguyen, T., Jabbari, F.: Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation. Automatica 36(9), 1339–1346 (2000) MathSciNetMATHCrossRefGoogle Scholar
  63. 274.
    Niculescu, S.-I.: Delay Effects on Stability. A Robust Control Approach. Springer, Berlin (2001) MATHGoogle Scholar
  64. 276.
    Oliveira, M.Z., Gomes Da Silva Jr., J.M., Coutinho, D., Tarbouriech, S.: Anti-windup Design for a Class of Nonlinear Control Systems. In: IFAC World Congress, Milan, Italy (2011) Google Scholar
  65. 278.
    Pagnotta, L., Zaccarian, L., Constantinescu, A., Galeani, S.: Anti-windup applied to adaptive rejection of unknown narrow band disturbances. In: European Control Conference, Kos, Greece, pp. 150–157 (2007) Google Scholar
  66. 284.
    Park, J.-K., Youn, H.Y.: Dynamic anti-windup based control method for state constrained systems. Automatica, 1915–1922 (2003) Google Scholar
  67. 285.
    Park, J.-K., Choi, C.-H., Choo, H.: Dynamic anti-windup method for a class of time-delay control systems with input saturation. Int. J. Robust Nonlinear Control 10, 457–488 (2000) MathSciNetMATHCrossRefGoogle Scholar
  68. 295.
    Queinnec, I., Tarbouriech, S., Garcia, G.: Anti-windup design for aircraft control. In: IEEE Conference on Control Applications (CCA), Munich, Germany (2006) Google Scholar
  69. 298.
    Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39, 1667–1604 (2003) MathSciNetMATHCrossRefGoogle Scholar
  70. 303.
    Roos, C., Biannic, J.-M.: A convex characterization of dynamically-constrained anti-windup controllers. Automatica, 2449–2452 (2008) Google Scholar
  71. 307.
    Rundquist, L., Stahl-Gunnarsson, K.: Phase compensation of rate-limiters in unstable aircraft. In: IEEE Conference on Control Applications, Dearlorn, MI, pp. 19–24 (1996) Google Scholar
  72. 308.
    Saberi, A., Stoorvogel, A.: Output regulation of linear plants with actuators subject to amplitude and rate constraints. Int. J. Robust Nonlinear Control 9(10), 631–657 (1999) MathSciNetMATHCrossRefGoogle Scholar
  73. 325.
    Sofrony, J., Turner, M.C., Postlethwaite, I.: Anti-windup synthesis for systems with rate-limits: a Riccati equation approach. In: SICE Annual Conference, Okayama, Japan (2005) Google Scholar
  74. 339.
    Syaichu-Rohman, A., Middleton, R.H.: Anti-windup schemes for discrete time systems: an LMI-based design. In: Asian Control Conference, Melbourne, VIC, Australia, pp. 554–561 (2004) Google Scholar
  75. 347.
    Tarbouriech, S., Garcia, G.: Preliminary results about anti-windup strategy for systems subject to actuator and sensor saturations. In: IFAC World Congress, Prague (2005) Google Scholar
  76. 352.
    Tarbouriech, S., Turner, M.C.: Anti-windup design: an overview of some recent advances and open problems. IET Control Theory Appl. 3(1), 1–19 (2009) MathSciNetCrossRefGoogle Scholar
  77. 355.
    Tarbouriech, S., Gomes da Silva Jr., J.M., Garcia, G.: Delay-dependent anti-windup loops for enlarging the stability region of time-delay systems with saturating inputs. ASME J. Dyn. Syst. Meas. Control 125(1), 265–267 (2003) CrossRefGoogle Scholar
  78. 356.
    Tarbouriech, S., Gomes da Silva Jr., J.M., Garcia, G.: Delay-dependent anti-windup strategy for linear systems with saturating inputs and delayed outputs. Int. J. Robust Nonlinear Control 14, 665–682 (2004) MathSciNetMATHCrossRefGoogle Scholar
  79. 357.
    Tarbouriech, S., Prieur, C., Gomes da Silva Jr., J.M.: An anti-windup strategy for a flexible cantilever beam. In: IFAC World Congress, Prague, CZ (2005) Google Scholar
  80. 358.
    Tarbouriech, S., Gomes da Silva Jr., J.M., Bender, F.A.: Dynamic anti-windup synthesis for discrete-time linear systems subject to input saturation and \(\mathcal{L}_{2}\) disturbances. In: IFAC Symposium on Robust Control Design (ROCOND), Toulouse, France (2006) Google Scholar
  81. 359.
    Tarbouriech, S., Prieur, C., Gomes da Silva Jr., J.M.: Stability analysis and stabilization of systems presenting nested saturations. IEEE Trans. Autom. Control 51(8), 1364–1371 (2006) MathSciNetCrossRefGoogle Scholar
  82. 360.
    Tarbouriech, S., Queinnec, I., Garcia, G.: Stability region enlargement through anti-windup strategy for linear systems with dynamics restricted actuator. Int. J. Syst. Sci. 37(2), 79–90 (2006) MathSciNetMATHCrossRefGoogle Scholar
  83. 361.
    Tarbouriech, S., Garcia, G., Glattfelder, A.H. (eds.): Advanced Strategies in Control Systems with Input and Output Constraints. LNCIS, vol. 346. Springer, Berlin (2007) MATHGoogle Scholar
  84. 367.
    Teel, A.R.: Anti-windup for exponentially unstable linear systems. Int. J. Robust Nonlinear Control 9, 701–716 (1999) MathSciNetMATHCrossRefGoogle Scholar
  85. 368.
    Teel, A.R., Buffington, J.B.: Anti-windup for an F-16’s daisy chain control allocator. In: AIAA GNC Conference, New Orleans, LA, USA, pp. 748–754 (1997) Google Scholar
  86. 369.
    Teel, A.R., Kapoor, N.: The \(\mathcal{L}_{2}\) anti-windup problem: Its definition and solution. In: European Control Conference, Brussels, Belgium, July 1997 Google Scholar
  87. 370.
    Teel, A.R., Kapoor, N.: Uniting local and global controllers. In: European Control Conference, Brussels, Belgium, July 1997 Google Scholar
  88. 372.
    Turner, M.C., Postlethwaite, I.: A new perspective on static and low order anti-windup synthesis. Int. J. Control 77(1), 27–44 (2004) MathSciNetMATHCrossRefGoogle Scholar
  89. 373.
    Turner, M.C., Tarbouriech, S.: Anti-windup for linear systems with sensor saturation: sufficient conditions for global stability and \(\mathcal{L}_{2}\) gain. In: Conference on Decision and Control, San Diego, USA (2006) Google Scholar
  90. 374.
    Turner, M.C., Tarbouriech, S.: Anti-windup compensation for systems with sensor saturation: a study of architecture and structure. Int. J. Control 82(7), 1253–1266 (2009) MathSciNetMATHCrossRefGoogle Scholar
  91. 375.
    Turner, M.C., Zaccarian, L. (eds.): Special issue: anti-windup. Int. J. Syst. Sci. 37(2), 65–139 (2006) CrossRefGoogle Scholar
  92. 382.
    Valmorbida, G., Tarbouriech, S., Turner, M.C., Garcia, G.: Anti-windup for NDI quadratic systems. In: IFAC Symposium on Nonlinear Control Systems (NOLCOS), Bologna, Italy, pp. 1175–1180 (2010) Google Scholar
  93. 388.
    Wada, N., Saeki, M.: Synthesis of a static anti-windup compensator for systems with magnitude and rate limited actuators. In: IFAC Symposium on Robust Control Design (ROCOND), Prague, Czech Rep., June 2000 Google Scholar
  94. 397.
    Wu, F., Lu, B.: Anti-windup control design for exponentially unstable LTI systems with actuator saturation. Syst. Control Lett. 52, 305–322 (2004) MathSciNetMATHCrossRefGoogle Scholar
  95. 398.
    Wu, F., Soto, M.: Extended anti-windup control schemes for LTI and LFT systems with actuator saturations. Int. J. Robust Nonlinear Control 14, 1255–1281 (2004) MathSciNetMATHCrossRefGoogle Scholar
  96. 404.
    Zaccarian, L., Teel, A.R.: A common framework for anti-windup, bumpless transfer and reliable designs. Automatica 38(10), 1735–1744 (2002) MathSciNetMATHCrossRefGoogle Scholar
  97. 405.
    Zaccarian, L., Teel, A.R.: Nonlinear scheduled anti-windup design for linear system. IEEE Trans. Autom. Control 49(11), 2055–2061 (2004) MathSciNetCrossRefGoogle Scholar
  98. 406.
    Zaccarian, L., Teel, A.R.: Modern Anti-windup Synthesis. Princeton University Press, Princeton (2011) Google Scholar
  99. 407.
    Zaccarian, L., Nes̆ic̀, D., Teel, A.R.: \(\mathcal{L}_{2}\) anti-windup for linear dead-time systems. Syst. Control Lett. 54(12), 1205–1217 (2005) MathSciNetMATHCrossRefGoogle Scholar
  100. 409.
    Zaccarian, L., Li, Y., Weyer, E., Cantoni, M., Teel, A.R.: Anti-windup for marginally stable plants and its application to open water channel control systems. Control Eng. Pract. 15(2), 261–272 (2007) CrossRefGoogle Scholar
  101. 411.
    Zheng, A., Kothare, M.V., Morari, M.: Anti-windup design for internal model control. Int. J. Control 60(5), 1015–1024 (1994) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Sophie Tarbouriech
    • 1
  • Germain Garcia
    • 2
  • João Manoel Gomes da SilvaJr.
    • 3
  • Isabelle Queinnec
    • 1
  1. 1.Laboratoire Analyse et Architecture des Systèmes (LAAS)CNRSToulouse CX 4France
  2. 2.Laboratoire Analyse et Architecture des Systèmes (LAAS)CNRSToulouse CX 4France
  3. 3.Departamento de Engenharia ElétricaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations