Advertisement

An Overview of Anti-windup Techniques

  • Sophie Tarbouriech
  • Germain Garcia
  • João Manoel Gomes da SilvaJr.
  • Isabelle Queinnec

Abstract

This chapter is dedicated to the presentation of a panel of the different anti-windup techniques which can be found in the literature. We try to explain the philosophy pursued by the anti-windup compensation together with a bit of history allowing us to show the development of the various techniques. We focus on the modern anti-windup loop design in opposition to ad hoc solutions. Quick overviews both in regional and global stability frameworks are presented.

Keywords

Absolute Stability Global Asymptotic Stability Linear Plant Bilinear Matrix Inequality Linear Differential Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 7.
    Angeli, D., Mosca, E.: Command governors for constrained nonlinear systems. IEEE Trans. Autom. Control 44(4), 816–820 (1999) MathSciNetCrossRefMATHGoogle Scholar
  2. 10.
    Åström, K.J., Rundqwist, L.: Integrator windup and how to avoid it. In: American Control Conference, Pittsburgh, PA, pp. 1693–1698 (1989) Google Scholar
  3. 14.
    Barbu, C., Reginatto, R., Teel, A.R., Zaccarian, L.: Anti-windup for exponentially unstable linear systems with inputs limited in magnitude and rate. In: American Control Conference, Chicago, IL, June 2000 Google Scholar
  4. 18.
    Bemporad, A., Teel, A.R., Zaccarian, L.: Anti-windup synthesis via sampled-data piecewise affine optimal control. Automatica 40(4), 549–562 (2004) MathSciNetCrossRefMATHGoogle Scholar
  5. 25.
    Bernstein, D.S., Michel, A.N.: A chronological bibliography on saturating actuators. Int. J. Robust Nonlinear Control 5, 375–380 (1995) MathSciNetCrossRefMATHGoogle Scholar
  6. 27.
    Biannic, J.-M., Tarbouriech, S.: Optimization and implementation of dynamic anti-windup compensators with multiple saturations in flight control systems. Control Eng. Pract. 17, 703–713 (2009) CrossRefGoogle Scholar
  7. 28.
    Biannic, J.-M., Tarbouriech, S., Farret, D.: A practical approach to performance analysis of saturated systems with application to fighter aircraft flight controllers. In: IFAC Symposium on Robust Control Design (ROCOND), Toulouse, France, July 2006 Google Scholar
  8. 29.
    Biannic, J.-M., Roos, C., Tarbouriech, S.: A practical method for fixed-order anti-windup design. In: IFAC Symposium on Nonlinear Control Systems (NOLCOS), Pretoria, South Africa (2007) Google Scholar
  9. 41.
    Boada, J., Prieur, C., Tarbouriech, S., Pittet, C., Charbonnel, C.: Anti-windup design for satellite control with microthrusters. In: AIAA Guidance, Navigation, and Control Conference, Chicago, IL, USA (2009) Google Scholar
  10. 42.
    Boada, J., Prieur, C., Tarbouriech, S., Pittet, C., Charbonnel, C.: Multi-saturation anti-windup structure for satellite control. In: American Control Conference, Baltimore, USA, June 2010 Google Scholar
  11. 46.
    Brieger, O., Kerr, M., Leissling, D., Postlethwaite, I., Sofrony, J., Turner, M.C.: Anti-windup compensation of rate saturation in an experimental aircraft. In: American Control Conference, New York (2007) Google Scholar
  12. 51.
    Burgat, C., Tarbouriech, S.: Intelligent anti-windup for systems with input magnitude saturation. Int. J. Robust Nonlinear Control 8, 1085–1100 (1998) MathSciNetCrossRefMATHGoogle Scholar
  13. 53.
    Campo, P.J., Morari, M., Nett, C.N.: Multivariable anti-windup and bumpless transfer: a general theory. In: American Control Conference, Pittsburgh, pp. 1706–1711 (1989) Google Scholar
  14. 56.
    Cao, Y.Y., Lin, Z., Ward, D.G.: An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation. IEEE Trans. Autom. Control 47(1), 140–145 (2002) MathSciNetCrossRefGoogle Scholar
  15. 76.
    Crawshaw, S.: Global and local analyses of coprime-factor based anti-windup for stable and unstable plants. In: European Control Conference, Cambridge (2003) Google Scholar
  16. 87.
    Edwards, C., Postlethwaite, I.: Anti-windup and bumpless-transfer schemes. Automatica 34(2), 199–210 (1998) MathSciNetCrossRefGoogle Scholar
  17. 90.
    Fertik, H.A., Ross, C.W.: Direct digital control algorithm with anti-windup feature. ISA Trans. 6, 317–328 (1967) Google Scholar
  18. 108.
    Galeani, S., Tarbouriech, S., Turner, M.C., Zaccarian, L.: A tutorial on modern anti-windup design. Eur. J. Control 15(3–4), 418–440 (2009) MathSciNetCrossRefGoogle Scholar
  19. 121.
    Gatley, S.L., Turner, M.C., Postlethwaite, I., Kumar, A.: A comparison of rate-limit compensation schemes for pilot-induced-oscillation avoidance. Aerosp. Sci. Technol. 10(1), 37–47 (2006) CrossRefMATHGoogle Scholar
  20. 125.
    Gilbert, E.G., Kolmanovsky, I.: Fast reference governors for systems with state and control constraints and disturbance inputs. Int. J. Robust Nonlinear Control 9(15), 1117–1141 (1999) MathSciNetCrossRefMATHGoogle Scholar
  21. 127.
    Glattfelder, A.H., Schaufelberger, W.: Control Systems with Input and Output Constraints. Springer, London (2003) CrossRefMATHGoogle Scholar
  22. 138.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Anti-windup design with guaranteed regions of stability: an LMI-based approach. In: Conference on Decision and Control, Hawaii, USA (2003) Google Scholar
  23. 139.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Anti-windup design with guaranteed region of stability: an LMI-based approach. IEEE Trans. Autom. Control 50(1), 106–111 (2005) MathSciNetCrossRefGoogle Scholar
  24. 140.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Anti-windup design with guaranteed regions of stability for discrete-time linear systems. Syst. Control Lett. 55(3), 184–192 (2006) MathSciNetCrossRefMATHGoogle Scholar
  25. 143.
    Gomes da Silva Jr., J.M., Tarbouriech, S., Reginatto, R.: Analysis of regions of stability for linear systems with saturating inputs through an anti-windup scheme. In: IEEE Conference on Control Applications (CCA), Glasgow, UK (2002) Google Scholar
  26. 150.
    Grimm, G., Postlethwaite, I., Teel, A.R., Turner, M.C., Zaccarian, L.: Linear matrix inequalities for full and reduced order anti-windup synthesis. In: American Control Conference, Arlington, VA, pp. 4134–4139 (2001) Google Scholar
  27. 151.
    Grimm, G., Hatfield, J., Postlethwaite, I., Teel, A.R., Turner, M.C., Zaccarian, L.: Anti-windup for stable linear systems with input saturation: an LMI based synthesis. IEEE Trans. Autom. Control 48(9), 1509–1525 (2003) MathSciNetCrossRefGoogle Scholar
  28. 152.
    Grimm, G., Teel, A.R., Zaccarian, L.: The \(\mathcal{L}_{2}\) anti-windup problem for discrete-time linear systems: definition and solutions. In: American Control Conference, Denver, CO, pp. 5329–5334 (2003) Google Scholar
  29. 153.
    Grimm, G., Teel, A.R., Zaccarian, L.: Robust linear anti-windup synthesis for recovery of unconstrained performance. Int. J. Robust Nonlinear Control 14(13–14), 1133–1168 (2004) MathSciNetCrossRefMATHGoogle Scholar
  30. 163.
    Hanus, R., Kinnaert, M.: Control of constrained multivariable systems using conditioning technique. In: American Control Conference, Pittsburgh, pp. 1712–1718 (1989) Google Scholar
  31. 164.
    Hanus, R., Kinnaert, M., Henrotte, J.L.: Conditioning technique, a general anti-windup and bumpless transfer method. Automatica 23, 729–739 (1987) CrossRefMATHGoogle Scholar
  32. 178.
    Herrmann, G., Turner, M.C., Postlethwaite, I.: Practical implementation of a novel anti-windup scheme in a HDD-dual-stage servo-system. IEEE/ASME Trans. Mechatron. 9(3), 580–592 (2004) CrossRefGoogle Scholar
  33. 179.
    Herrmann, G., Turner, M.C., Postlethwaite, I.: Some new results on anti-windup conditioning using the Weston–Postlethwaite approach. In: Conference on Decision and Control (2004) Google Scholar
  34. 181.
    Herrmann, G., Turner, M.C., Postlethwaite, I.: Discrete-time and sampled-data anti-windup synthesis: stability and performance. Int. J. Syst. Sci. 37(2), 91–113 (2006) MathSciNetCrossRefMATHGoogle Scholar
  35. 184.
    Hippe, P.: Windup in Control. Its Effects and Their Prevention. AIC/Springer, Berlin (2006) Google Scholar
  36. 185.
    Horrowitz, I.: A synthesis theory for a class of saturating systems. Int. J. Control 38(1), 169–187 (1983) CrossRefGoogle Scholar
  37. 188.
    Hu, T., Lin, Z.: Control Systems with Actuator Saturation: Analysis and Design. Birkhäuser, Boston (2001) CrossRefMATHGoogle Scholar
  38. 195.
    Hu, T., Teel, A.R., Zaccarian, L.: Regional anti-windup compensation for linear systems with input saturation. In: American Control Conference, Portland, OR, pp. 3397–3402 (2005) Google Scholar
  39. 197.
    Hu, T., Teel, A.R., Zaccarian, L.: Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance. Automatica 64(2), 512–519 (2008) MathSciNetCrossRefGoogle Scholar
  40. 208.
    Kapila, V., Grigoriadis, K. (eds.): Actuator Saturation Control. Dekker, New York (2002) Google Scholar
  41. 211.
    Kapoor, N., Teel, A.R., Daoutidis, P.: An anti-windup design for linear systems with input saturation. Automatica 34(5), 559–574 (1998) MathSciNetCrossRefMATHGoogle Scholar
  42. 212.
    Kerr, M., Villota, E., Jayasuriya, S.: Robust anti-windup design for input constrained SISO systems. In: 8th International Symposium on QFT and Robust Frequency Domain Methods (2007) Google Scholar
  43. 215.
    Khalil, H.K.: Nonlinear Systems. MacMillan, London (1992) MATHGoogle Scholar
  44. 224.
    Kothare, M.V., Morari, M.: Stability analysis of anti-windup control scheme: a review and some generalizations. In: European Control Conference, Brussels, Belgium (1997) Google Scholar
  45. 225.
    Kothare, M.V., Morari, M.: Multiplier theory for stability analisys of anti-windup control systems. Automatica 35, 917–928 (1999) MathSciNetCrossRefMATHGoogle Scholar
  46. 226.
    Kothare, M.V., Campo, P.J., Morari, M., Nett, C.N.: A unified framework for the study of anti-windup designs. Automatica 30(12), 1869–1883 (1994) MathSciNetCrossRefMATHGoogle Scholar
  47. 228.
    Krikelis, N.J.: State feedback integral control with inteligent integrator. Int. J. Control 32, 465–473 (1980) MathSciNetCrossRefGoogle Scholar
  48. 245.
    Lin, Z., Mantri, R., Saberi, A.: Semi-global output regulation for linear systems subject to input saturation—a low and high gain design. Control Theory Adv. Technol. 10(4), 2209–2232 (1995) MathSciNetGoogle Scholar
  49. 250.
    Lozier, J.C.: A steady-state approach to the theory of saturable servo systems. IRE Trans. Autom. Control, 19–39 (1956) Google Scholar
  50. 251.
    Lu, B., Wu, F., Kim, S.: Linear parameter varying anti-windup compensation for enhanced flight control performance. AIAA J. Guid. Control Dyn. 28(3), 494–504 (2005) CrossRefGoogle Scholar
  51. 253.
    Lurie, B.J.: The absolutely stable Nyquist stable nonlinear feedback system design. Int. J. Control 40(6), 1119–1130 (1984) CrossRefMATHGoogle Scholar
  52. 256.
    Marcopoli, V.R., Phillips, S.M.: Analysis and synthesis tools for a class of actuator-limited multivariable control systems: a linear matrix inequality approach. Int. J. Robust Nonlinear Control 6(9–10), 1045–1063 (1996) MathSciNetCrossRefMATHGoogle Scholar
  53. 261.
    Miyamoto, S., Vinnicombe, G.: Robust control of plants with saturation nonlinearity based on coprime factor representation. In: Conference on Decision and Control, Kobe, Japan, pp. 2838–2840 (1996) Google Scholar
  54. 268.
    Mulder, E.F., Kothare, M.V.: Synthesis of stabilizing anti-windup controllers using piecewise quadratic Lyapunov functions. In: American Control Conference, pp. 3239–3243 (2000) Google Scholar
  55. 269.
    Mulder, E.F., Kothare, M.V., Morari, M.: Multivariable anti-windup controller synthesis using linear matrix inequalities. Automatica 37(9), 1407–1416 (2001) CrossRefMATHGoogle Scholar
  56. 286.
    Park, J.-K., Lim, H., Basar, T., Choi, C.-H.: Anti-windup compensator for active queue management in TCP networks. Control Eng. Pract. 11(10), 1127–1142 (2003) CrossRefGoogle Scholar
  57. 295.
    Queinnec, I., Tarbouriech, S., Garcia, G.: Anti-windup design for aircraft control. In: IEEE Conference on Control Applications (CCA), Munich, Germany (2006) Google Scholar
  58. 301.
    Romanchuk, B.G.: Some comments on anti-windup synthesis using LMI’s. Int. J. Robust Nonlinear Control 9(10), 717–734 (1999) MathSciNetCrossRefMATHGoogle Scholar
  59. 302.
    Roos, C.: Contribution à la commande des systèmes saturés en présence d’incertitudes et de variations paramétriques. Application au pilotage de l’avion au sol. PhD thesis, University of Toulouse, ISAE, France, December 2007 Google Scholar
  60. 304.
    Roos, C., Biannic, J.-M., Tarbouriech, S., Prieur, C.: On-Ground Aircraft Control Design Using an LPV Anti-windup Approach. LNCIS, vol. 365. Springer, Berlin (2007). Chap. 7 Google Scholar
  61. 309.
    Saberi, A., Lin, Z., Teel, A.: Control of linear systems with saturating actuators. IEEE Trans. Autom. Control 41(3), 368–377 (1996) MathSciNetCrossRefMATHGoogle Scholar
  62. 312.
    Saeki, M., Wada, N.: Synthesis of a static anti-windup compensator via linear matrix inequalities. Int. J. Robust Nonlinear Control 12, 927–953 (2002) MathSciNetCrossRefMATHGoogle Scholar
  63. 317.
    Schuster, E., Walker, M.L., Humphreys, D.A., Krstic, M.: Plasma vertical stabilization with actuation constraints in the DIII-D tokamak. Automatica 41(7), 1173–1179 (2005) CrossRefMATHGoogle Scholar
  64. 320.
    Shamma, J.S.: Anti-windup via constrained regulation with observers. Syst. Control Lett. 40(4), 261–268 (2000) MathSciNetCrossRefMATHGoogle Scholar
  65. 331.
    Stoorvogel, A.A., Saberi, A. (eds.): Special issue: control problems with constraints. Int. J. Robust Nonlinear Control 9(10) (1999) Google Scholar
  66. 335.
    Suárez, R., Alvarez-Ramirez, J., Solis-Daun, J.: Linear systems with bounded inputs: global stabilization with eigenvalue placement. Int. J. Robust Nonlinear Control 7(9), 835–845 (1997) CrossRefMATHGoogle Scholar
  67. 352.
    Tarbouriech, S., Turner, M.C.: Anti-windup design: an overview of some recent advances and open problems. IET Control Theory Appl. 3(1), 1–19 (2009) MathSciNetCrossRefGoogle Scholar
  68. 357.
    Tarbouriech, S., Prieur, C., Gomes da Silva Jr., J.M.: An anti-windup strategy for a flexible cantilever beam. In: IFAC World Congress, Prague, CZ (2005) Google Scholar
  69. 358.
    Tarbouriech, S., Gomes da Silva Jr., J.M., Bender, F.A.: Dynamic anti-windup synthesis for discrete-time linear systems subject to input saturation and \(\mathcal{L}_{2}\) disturbances. In: IFAC Symposium on Robust Control Design (ROCOND), Toulouse, France (2006) Google Scholar
  70. 359.
    Tarbouriech, S., Prieur, C., Gomes da Silva Jr., J.M.: Stability analysis and stabilization of systems presenting nested saturations. IEEE Trans. Autom. Control 51(8), 1364–1371 (2006) MathSciNetCrossRefGoogle Scholar
  71. 360.
    Tarbouriech, S., Queinnec, I., Garcia, G.: Stability region enlargement through anti-windup strategy for linear systems with dynamics restricted actuator. Int. J. Syst. Sci. 37(2), 79–90 (2006) MathSciNetCrossRefMATHGoogle Scholar
  72. 361.
    Tarbouriech, S., Garcia, G., Glattfelder, A.H. (eds.): Advanced Strategies in Control Systems with Input and Output Constraints. LNCIS, vol. 346. Springer, Berlin (2007) MATHGoogle Scholar
  73. 367.
    Teel, A.R.: Anti-windup for exponentially unstable linear systems. Int. J. Robust Nonlinear Control 9, 701–716 (1999) MathSciNetCrossRefMATHGoogle Scholar
  74. 368.
    Teel, A.R., Buffington, J.B.: Anti-windup for an F-16’s daisy chain control allocator. In: AIAA GNC Conference, New Orleans, LA, USA, pp. 748–754 (1997) Google Scholar
  75. 369.
    Teel, A.R., Kapoor, N.: The \(\mathcal{L}_{2}\) anti-windup problem: Its definition and solution. In: European Control Conference, Brussels, Belgium, July 1997 Google Scholar
  76. 370.
    Teel, A.R., Kapoor, N.: Uniting local and global controllers. In: European Control Conference, Brussels, Belgium, July 1997 Google Scholar
  77. 371.
    Teel, A.R., Zaccarian, L., Marcinkowski, J.J.: An anti-windup strategy for active vibration isolation systems. Control Eng. Pract. 14(1), 17–27 (2006) CrossRefGoogle Scholar
  78. 372.
    Turner, M.C., Postlethwaite, I.: A new perspective on static and low order anti-windup synthesis. Int. J. Control 77(1), 27–44 (2004) MathSciNetCrossRefMATHGoogle Scholar
  79. 373.
    Turner, M.C., Tarbouriech, S.: Anti-windup for linear systems with sensor saturation: sufficient conditions for global stability and \(\mathcal{L}_{2}\) gain. In: Conference on Decision and Control, San Diego, USA (2006) Google Scholar
  80. 375.
    Turner, M.C., Zaccarian, L. (eds.): Special issue: anti-windup. Int. J. Syst. Sci. 37(2), 65–139 (2006) CrossRefGoogle Scholar
  81. 376.
    Turner, M.C., Herrmann, G., Postlethwaite, I.: Accounting for uncertainty in anti-windup synthesis. In: American Control Conference, Bostron, MA, pp. 5292–5297 (2004) Google Scholar
  82. 377.
    Turner, M.C., Herrmann, G., Postlethwaite, I.: Incorporating robustness requirements into anti-windup design. IEEE Trans. Autom. Control 52(10), 1842–1855 (2007) MathSciNetCrossRefGoogle Scholar
  83. 378.
    Tyan, F., Bernstein, D.S.: Anti-windup compensator synthesis for systems with saturating actuators. Int. J. Robust Nonlinear Control 5(5), 521–537 (1995) MathSciNetCrossRefMATHGoogle Scholar
  84. 386.
    Villota, E., Kerr, M., Jayasuriya, S.: A study of configurations for anti-windup control of uncertain systems. In: Conference on Decision and Control, San Diego, California (2006) Google Scholar
  85. 390.
    Walgama, K.S., Ronnback, S., Sternby, J.: Generalization of conditioning technique for anti-windup compensators. IEE Proc. D 139(2), 109–118 (1992) MATHGoogle Scholar
  86. 391.
    Walsh, M.J., Hayes, M.J.: A robust throughput rate control mechanism for an 802.15.4 wireless sensor network—an anti-windup approach. In: American Control Conference, New York (2007) Google Scholar
  87. 393.
    Weston, P.F., Postlethwaite, I.: Analysis and design of linear conditioning schemes for systems containing saturating actuators. In: IFAC Nonlinear Control System Design Symposium (1998) Google Scholar
  88. 394.
    Weston, P.F., Postlethwaite, I.: Linear conditioning for systems containing saturating actuators. Automatica 36(9), 1347–1354 (2000) MathSciNetCrossRefMATHGoogle Scholar
  89. 396.
    Wu, W., Jayasuriya, S.: A new QFT design methodology for feedback systems under input saturation. ASME J. Dyn. Syst. Meas. Control 123(2), 225–232 (2001) CrossRefGoogle Scholar
  90. 397.
    Wu, F., Lu, B.: Anti-windup control design for exponentially unstable LTI systems with actuator saturation. Syst. Control Lett. 52, 305–322 (2004) MathSciNetCrossRefMATHGoogle Scholar
  91. 398.
    Wu, F., Soto, M.: Extended anti-windup control schemes for LTI and LFT systems with actuator saturations. Int. J. Robust Nonlinear Control 14, 1255–1281 (2004) MathSciNetCrossRefMATHGoogle Scholar
  92. 401.
    Wurmthaler, C., Hippe, P.: Closed-loop design for stable and unstable plants with input saturation. In: European Control Conference, Gröningen, The Netherlands, pp. 1084–1088 (1993) Google Scholar
  93. 404.
    Zaccarian, L., Teel, A.R.: A common framework for anti-windup, bumpless transfer and reliable designs. Automatica 38(10), 1735–1744 (2002) MathSciNetCrossRefMATHGoogle Scholar
  94. 405.
    Zaccarian, L., Teel, A.R.: Nonlinear scheduled anti-windup design for linear system. IEEE Trans. Autom. Control 49(11), 2055–2061 (2004) MathSciNetCrossRefGoogle Scholar
  95. 406.
    Zaccarian, L., Teel, A.R.: Modern Anti-windup Synthesis. Princeton University Press, Princeton (2011) Google Scholar
  96. 409.
    Zaccarian, L., Li, Y., Weyer, E., Cantoni, M., Teel, A.R.: Anti-windup for marginally stable plants and its application to open water channel control systems. Control Eng. Pract. 15(2), 261–272 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Sophie Tarbouriech
    • 1
  • Germain Garcia
    • 2
  • João Manoel Gomes da SilvaJr.
    • 3
  • Isabelle Queinnec
    • 1
  1. 1.Laboratoire Analyse et Architecture des Systèmes (LAAS)CNRSToulouse CX 4France
  2. 2.Laboratoire Analyse et Architecture des Systèmes (LAAS)CNRSToulouse CX 4France
  3. 3.Departamento de Engenharia ElétricaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations