Advertisement

Synthesis via a Parameterized ARE Approach or a Parameterized LMI Approach

  • Sophie TarbouriechEmail author
  • Germain Garcia
  • João Manoel Gomes da SilvaJr.
  • Isabelle Queinnec
Chapter
  • 1.5k Downloads

Abstract

This chapter deals with the problem of control design taking into account control amplitude limitation and the performance level through a quadratic criterion. Two approaches are presented for solving the problem. The first one is developed using the properties of an adequate parameterized Riccati equation. The second one is an alternate way, derived in terms of parameterized LMIs. Even if the two approaches are intimately connected, each of them possesses a specific interest. The Riccati equation approach is elegant, in some sense analytical, and allows one to enter into the structural properties of the problem. The LMI approach is easier to derive, numerically powerful and adapted for easily taking into account other constraints like for example constrained control structures or maximization of volume of the attraction domain or its approximations. Some extensions are also proposed. In particular, the problems of multi-objective control (quadratic criterion and pole placement), disturbance rejection and control of time-delay systems are addressed.

References

  1. 4.
    Alvarez-Ramirez, J., Suárez, R.: Global stabilization of discrete-time linear systems with bounded linear state feedback. Int. J. Adapt. Control Signal Process. 10(4–5), 409–416 (1996) zbMATHCrossRefGoogle Scholar
  2. 11.
    Athans, M., Falb, P.L.: Optimal Control: An Introduction to the Theory and Its Applications. McGraw-Hill, New York (1966) Google Scholar
  3. 15.
    Barmish, B.R.: Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. J. Optim. Theory Appl. 46(4), 399–408 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 45.
    Boyd, S., El Ghaoui, L., Féron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1994) zbMATHGoogle Scholar
  5. 47.
    Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Wiley, New York (1969) Google Scholar
  6. 77.
    Daafouz, J.: Robustesse en performance des systèmes linéaires incertains: placement de pôles et coût garanti. PhD thesis, Institut National des Sciences Appliquées de Toulouse, Toulouse, France (November 1997). Rapport LAAS No. 97472 Google Scholar
  7. 109.
    Garcia, G.: Quadratic guaranteed cost and disk pole location control for discrete time uncertain systems. IEE Proc., Control Theory Appl. 144, 545–548 (1997) zbMATHCrossRefGoogle Scholar
  8. 110.
    Garcia, G., Bernussou, J.: Pole assignment for uncertain systems in a specified disk by state feedback. IEEE Trans. Autom. Control 40, 184–190 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 112.
    Garcia, G., Tarbouriech, S.: Stabilization with eigenvalues placement of a norm bounded uncertain system by bounded inputs. Int. J. Robust Nonlinear Control 9, 599–615 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 113.
    Garcia, G., Tarbouriech, S.: Nonlinear bounded control for time-delay systems. Kybernetika 37, 381–396 (2001) MathSciNetGoogle Scholar
  11. 116.
    Garcia, G., Bernussou, J., Arzelier, D.: Stabilization of an uncertain linear dynamic system by state and output feedback: a quadratic stabilizability approach. Int. J. Control 64, 839–858 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 118.
    Garcia, G., Tarbouriech, S., Suárez, R., Alvarez-Ramirez, J.: Non linear bounded control for norm bounded uncertain system. IEEE Trans. Autom. Control 44(6), 1254–1258 (1999) zbMATHCrossRefGoogle Scholar
  13. 173.
    Henrion, D., Garcia, G., Tarbouriech, S.: Piecewise linear robust control of systems with bounded inputs. In: American Control Conference, Philadelphia, USA (1998) Google Scholar
  14. 216.
    Khargonekar, P., Petersen, I.R., Zhou, K.: Robust stabilization of uncertain linear system: quadratic stabilizability and H control theory. IEEE Trans. Autom. Control 35(3), 356–361 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 230.
    Kwakernak, H., Sivan, R.: Linear Optimal Control Systems. Wiley-Interscience, New York (1972) Google Scholar
  16. 246.
    Lin, Z., Saberi, A., Teel, A.R.: Simultaneous \({\mathcal{L}}_{p}\) stabilization and internal stabilization of linear systems subject to input saturation: state feedback case. Syst. Control Lett. 25, 219–226 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 288.
    Petersen, I.R.: A stabilization algorithm for a class of uncertain linear systems. Syst. Control Lett. 8, 351–356 (1987) zbMATHCrossRefGoogle Scholar
  18. 289.
    Petersen, I.R.: Guaranteed cost lqg control of uncertain linear systems. IEE Proc., Control Theory Appl. 142, 95–102 (1995) zbMATHCrossRefGoogle Scholar
  19. 296.
    Ran, A.C.M., Vreugdenhil, R.: Existence and comparison theorems for algebraic Riccati equations for continuous- and discrete-time systems. Linear Algebra Appl. 99, 63–83 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 315.
    Schmitendorf, W.E.: Designing stabilizing controllers for uncertain systems using Riccati approach. In: American Control Conference, Minneapolis, USA, pp. 502–505 (1987) Google Scholar
  21. 321.
    Shewchun, J.M., Féron, E.: High performance bounded control. In: American Control Conference, Albuquerque, New Mexico, USA, vol. 5, pp. 3250–3254 (1997) Google Scholar
  22. 335.
    Suárez, R., Alvarez-Ramirez, J., Solis-Daun, J.: Linear systems with bounded inputs: global stabilization with eigenvalue placement. Int. J. Robust Nonlinear Control 7(9), 835–845 (1997) zbMATHCrossRefGoogle Scholar
  23. 342.
    Tarbouriech, S.: Local stabilization of continuous-time delay systems with bounded inputs. In: Dugard, L., Verriest, E.J. (eds.) LNCIS, vol. 228, pp. 302–317 Springer, Berlin (1997) Google Scholar
  24. 353.
    Tarbouriech, S., Gomes da Silva Jr., J.M., Garcia, G.: Stability and disturbance tolerance for linear systems with bounded controls. In: European Control Conference, Porto, Portugal, pp. 3219–3224 (2001) Google Scholar
  25. 395.
    Wredenhagen, G.F., Bélanger, P.R.: Piecewise-linear LQ control for systems with input constraints. Automatica 30(3), 403–416 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 414.
    Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River (1996) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Sophie Tarbouriech
    • 1
    Email author
  • Germain Garcia
    • 2
  • João Manoel Gomes da SilvaJr.
    • 3
  • Isabelle Queinnec
    • 1
  1. 1.Laboratoire Analyse et Architecture des Systèmes (LAAS)CNRSToulouse CX 4France
  2. 2.Laboratoire Analyse et Architecture des Systèmes (LAAS)CNRSToulouse CX 4France
  3. 3.Departamento de Engenharia ElétricaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations