Advertisement

Stability Analysis and Stabilization—Sector Nonlinearity Model Approach

  • Sophie TarbouriechEmail author
  • Germain Garcia
  • João Manoel Gomes da SilvaJr.
  • Isabelle Queinnec
Chapter
  • 1.6k Downloads

Abstract

This chapter is dedicated to the stability analysis and control design problems of systems presenting control saturation as in Chap.  2, but now the saturation terms are modeled via the use of sector nonlinearity model. Problems to be dealt with regard the determination of regions where asymptotic stability of the system is ensured (which corresponds to the internal stability) as well as external stability of the system affected by additive exogenous signals. The control design is then mainly discussed in terms of state feedback control law. The case of dynamic output feedback is also briefly presented. The extension to the presence of model uncertainties is discussed, together with the discrete-time counterpart of the results. Finally, some generalizations, as those including nested saturations and nonlinear systems are examined.

Keywords

Dynamic Output Feedback Stabilization External Stability Control Design Problem Stability Analysis Problem Saturated Closed-loop System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alamo, T., Cepeda, A., Limon, D.: Improved computation of ellipsoidal invariant sets for saturated control systems. In: Conference on Decision and Control, Sevilla, Spain, December, pp. 6216–6221 (2005) Google Scholar
  2. 6.
    Amato, F., Consentino, C., Merola, A.: On the region of attraction of nonlinear quadratic systems. Automatica 43, 2119–2123 (2007) zbMATHCrossRefGoogle Scholar
  3. 16.
    Bateman, A., Lin, Z.: An analysis and design method for linear systems under nested saturation. Syst. Control Lett. 48(1), 41–52 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 17.
    Beker, O., Hollot, C.V., Chait, Y.: Plant with an integrator: an example of reset control overcoming limitations of linear feedback. IEEE Trans. Autom. Control 46, 1797–1799 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 19.
    Bender, F.A., Gomes da Silva Jr., J.M.: Acceleration-bounded control design for actuator fault prevention. In: American Control Conference, New York, NY, pp. 5218–5223 (2007) CrossRefGoogle Scholar
  6. 20.
    Bender, F.A., Gomes da Silva Jr., J.M.: Output feedback controller design for systems with amplitude and rate control constraints. Asian J. Control (2012, to appear) Google Scholar
  7. 27.
    Biannic, J.-M., Tarbouriech, S.: Optimization and implementation of dynamic anti-windup compensators with multiple saturations in flight control systems. Control Eng. Pract. 17, 703–713 (2009) CrossRefGoogle Scholar
  8. 40.
    Bliman, P.A., Oliveira, R.C.L.F., Montagner, V.F., Peres, P.L.D.: Existence of homogeneous polynomial solutions for parameter-dependent linear matrix inequalities with parameters in the simplex. In: Conference on Decision and Control, San Diego, USA, pp. 1486–1491 (2006) Google Scholar
  9. 43.
    Bobrow, J.E., Jabbari, F., Thai, K.: An active truss element and control law for vibration suppression. Smart Mater. Struct. 4(4), 264–269 (1995) CrossRefGoogle Scholar
  10. 45.
    Boyd, S., El Ghaoui, L., Féron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1994) zbMATHGoogle Scholar
  11. 48.
    Bupp, R.T., Bernstein, D.S., Chellaboina, V.S., Haddad, W.M.: Resetting virtual absorbers for vibration control. In: American Control Conference, New Mexico, USA, vol. 5, pp. 2647–2651 (1997) Google Scholar
  12. 57.
    Cao, Y.Y., Lin, Z., Chen, B.M.: An output feedback h controller for linear systems subject to sensor nonlinearities. IEEE Trans. Circuits Syst. I 50(7), 914–921 (2003) MathSciNetCrossRefGoogle Scholar
  13. 62.
    Castelan, E.B., Tarbouriech, S., Gomes da Silva Jr., J.M., Queinnec, I.: \(\mathcal{L}_{2}\)-stabilization of continuous-time systems with saturating actuators. Int. J. Robust Nonlinear Control 16, 935–944 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 63.
    Castelan, E.B., Tarbouriech, S., Queinnec, I.: Control design for a class of nonlinear continuous-time systems. Automatica 44(8), 2034–2039 (2008) MathSciNetCrossRefGoogle Scholar
  15. 64.
    Chen, C.T.: Linear System Theory and Design. Holt, Rinehart & Winston, New York (1984) Google Scholar
  16. 65.
    Chesi, G.: Computing output feedback controllers to enlarge the domain of attraction in polynomial systems. IEEE Trans. Autom. Control 49(10), 1846–1850 (2004) MathSciNetCrossRefGoogle Scholar
  17. 68.
    Chilali, M., Gahinet, P.: H design with pole placement constraints: an LMI approach. IEEE Trans. Autom. Control 41(3) (1996) Google Scholar
  18. 72.
    Clegg, J.C.: A non-linear integrator for servomechanisms. Trans. Am. Inst. Electr. Eng. 77, 41–42 (1958) Google Scholar
  19. 75.
    Coutinho, D.F., Gomes da Silva Jr., J.M.: Computing estimates of the region of attraction for rational control systems with saturating actuators. IET Control Theory Appl. 4(3), 315–325 (2010) MathSciNetCrossRefGoogle Scholar
  20. 79.
    D’Amato, F.J., Rotea, M.A., Megretski, A.V., Jönsson, U.T.: New results for analysis of systems with repeated nonlinearities. Automatica 37(5), 739–747 (2001) MathSciNetzbMATHGoogle Scholar
  21. 80.
    de Klerk, E.: Aspects of Semidefinite Programming. Interior Point Algorithms and Selected Applications. Kluwer Academic, Dordrecht (2002) zbMATHGoogle Scholar
  22. 81.
    de Oliveira, M.C., Skelton, R.E.: Stability tests for constrained linear systems. In: Reza-Moheimani, S.O. (ed.) Lecture Notes in Control and Information Sciences, vol. 268, pp. 241–257. Springer, New York (2001) Google Scholar
  23. 83.
    de Souza, C.E., Trofino, A., de Oliveira, J.: Parametric Lyapunov function approach to \(\mathcal{H}_{2}\) analysis and control of linear parameter-dependent systems. IEE Proc., Control Theory Appl. 150(5), 501–508 (2003) CrossRefGoogle Scholar
  24. 88.
    El Ghaoui, L., Oustry, F., Rami, M.A.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Autom. Control 42(8), 1171–1176 (1997) zbMATHCrossRefGoogle Scholar
  25. 91.
    Feuer, A., Goodwin, G.C., Salgado, M.: Potential benefits of hybrid control for linear time invariant plants. In: American Control Conference, New Mexico, USA, vol. 5, pp. 2790–2794 (1997) Google Scholar
  26. 93.
    Fiacchini, M., Tarbouriech, S., Prieur, C.: Ellipsoidal invariant sets for saturated hybrid systems. In: American Control Conference, San Francisco, USA, July 2011 Google Scholar
  27. 95.
    Fliegner, T., Logemann, H., Ryan, E.P.: Time-varying and adaptive integral control of linear systems with actuator and sensor nonlinearities. In: International Symposium on Mathematical Theory of Networks and Systems (MTNS), Perpignan, France (2000) Google Scholar
  28. 101.
    Gahinet, P., Nemirovski, A., Laub, A., Chilali, M.: LMI control toolbox user’s guide. The Math Works (1995) Google Scholar
  29. 119.
    Garcia, G., Tarbouriech, S., Gomes da Silva Jr., J.M.: Dynamic output controller design for linear systems with actuator and sensor saturation. In: American Control Conference, New York, USA, July 2007 Google Scholar
  30. 120.
    Garcia, G., Tarbouriech, S., Gomes da Silva Jr., J.M., Eckhard, D.: Finite L 2 gain and internal stabilisation of linear systems subject to actuator and sensor saturations. IET Control Theory Appl. 3(7), 799–812 (2009) MathSciNetCrossRefGoogle Scholar
  31. 127.
    Glattfelder, A.H., Schaufelberger, W.: Control Systems with Input and Output Constraints. Springer, London (2003) zbMATHCrossRefGoogle Scholar
  32. 128.
    Goebel, R., Prieur, C., Teel, A.R.: Smooth patchy control Lyapunov functions. Automatica 45(3), 675–683 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 139.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Anti-windup design with guaranteed region of stability: an LMI-based approach. IEEE Trans. Autom. Control 50(1), 106–111 (2005) MathSciNetCrossRefGoogle Scholar
  34. 142.
    Gomes da Silva Jr., J.M., Paim, C.C., Castelan, E.B.: Stability and stabilization of linear discrete-time systems subject to control saturation. In: IFAC Symposium on System Structure and Control, Prague, Czech Republic (2001) Google Scholar
  35. 147.
    Gomes da Silva Jr., J.M., Limon, D., Alamo, T., Camacho, E.F.: Dynamic output feedback for discrete-time systems under amplitude and rate actuator constraints. IEEE Trans. Autom. Control 53(10), 2367–2372 (2008) MathSciNetCrossRefGoogle Scholar
  36. 156.
    Gußner, T., Adamy, J.: Controller design for polynomial systems with input constraints. In: Conference on Decision and Control, Shanghai, China, December 2009 Google Scholar
  37. 157.
    Gußner, T., Adamy, J.: Designing nonpolynomial controllers for polynomial systems with input constraints using convex optimization and passivity. In: IEEE Multiconference on Systems and Control, Yokohama, Japan (2010) Google Scholar
  38. 160.
    Haddad, W.M., Chellaboina, V.S., Kablar, N.A.: Active control of combustion instabilities via hybrid resetting controllers. In: American Control Conference, pp. 2378–2382 (2000) Google Scholar
  39. 183.
    Hindi, H., Boyd, S.: Analysis of linear systems with saturation using convex optimization. In: Conference on Decision and Control, Tampa or, USA, pp. 903–908 (1998) Google Scholar
  40. 200.
    Ichihara, H.: State feedback synthesis for polynomial systems with input saturation using convex optimization. In: American Control Conference, New York, USA (2007) Google Scholar
  41. 206.
    Kaliora, G., Astolfi, A.: Nonlinear control of feedforward systems with bounded signals. IEEE Trans. Autom. Control 49(11), 1975–1990 (2004) MathSciNetCrossRefGoogle Scholar
  42. 209.
    Kapila, V., Haddad, W.M.: Fixed-structure controller design for systems with actuator amplitude and rate nonlinearities. Int. J. Control 73(6), 520–530 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 215.
    Khalil, H.K.: Nonlinear Systems. MacMillan, London (1992) zbMATHGoogle Scholar
  44. 218.
    Kim, J., Bien, Z.: Robust stability of uncertain linear systems with saturating actuators. IEEE Trans. Autom. Control 39(1), 202–207 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  45. 222.
    Koplon, R.B., Hautus, M.L.J., Sontag, E.D.: Observability of linear systems with saturated outputs. Linear Algebra Appl. 205–206, 909–936 (1994) MathSciNetCrossRefGoogle Scholar
  46. 227.
    Kreisselmeier, G.: Stabilisation of linear systems in the presence of output measurement saturation. Syst. Control Lett. 29, 27–30 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  47. 229.
    Kulkarni, V.V., Safonov, M.G.: All multipliers for repeated monotone nonlinearities. In: American Control Conference, Arlington, USA, June 2001 Google Scholar
  48. 233.
    Langouët, P.: Sur la stabilité locale de systèmes linéaires soumis à des actionneurs limités en amplitude et en dynamique. PhD thesis, University of Toulouse, France (November 2003). Rapport LAAS No. 03576 Google Scholar
  49. 237.
    Leith, D.J., Leithead, W.E.: Survey of gain-scheduling analysis and design. Int. J. Control 73(11), 1001–1025 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  50. 241.
    Lin, Z., Hu, T.: Semi-global stabilisation of linear systems subject to output saturation. Syst. Control Lett. 43, 211–217 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  51. 249.
    Loquen, T., Tarbouriech, S., Prieur, C.: Stability analysis for reset systems with input saturation. In: Conference on Decision and Control, New Orleans, LA, USA, pp. 3272–3277 (2007) Google Scholar
  52. 263.
    Montagner, V.F., Oliveira, R.C.L.F., Leite, V.J.S., Peres, P.L.D.: LMI approach for \({\mathcal{H}}_{\infty}\) linear parameter-varying state feedback control. IEE Proc., Control Theory Appl. 152(2), 195–201 (2005) CrossRefGoogle Scholar
  53. 264.
    Montagner, V.F., Peres, P.L.D., Tarbouriech, S., Queinnec, I.: Improved estimation of stability regions for uncertain linear systems with saturating actuators: an LMI-based approach. In: Conference on Decision and Control, San Diego, USA, pp. 5429–5434 (2006) Google Scholar
  54. 265.
    Montagner, V.F., Oliveira, R.C.L.F., Peres, P.L.D., Tarbouriech, S., Queinnec, I.: Gain-scheduled controllers for linear parameter-varying systems with saturating actuators: an LMI-based design. In: American Control Conference, New York, USA, pp. 6067–6072 (2007) CrossRefGoogle Scholar
  55. 275.
    Oliveira, R.C.L.F., Peres, P.L.D.: Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations. IEEE Trans. Autom. Control 52(7), 1334–1340 (2007) MathSciNetCrossRefGoogle Scholar
  56. 277.
    O’Reilly, J.: Observers for Linear Systems. Mathematics in Science and Engineering, vol. 170. Academic Press, San Diego (1983) zbMATHGoogle Scholar
  57. 279.
    Paim, C.: Analyse et commande de systèmes linéaires soumis à des saturations. PhD thesis, University of Toulouse, France (March 2003). Rapport LAAS No. 03241 Google Scholar
  58. 280.
    Paim, C., Tarbouriech, S., Gomes da Silva Jr., J.M., Castelan, E.B.: Control design for linear systems with saturating actuators and L 2-bounded disturbances. In: Conference on Decision and Control, Las Vegas, USA (2002) Google Scholar
  59. 281.
    Paim, C., Gomes da Silva Jr., J.M., Castelan, E.B., Tarbouriech, S.: Sintese de observadores de estado para sistemas lineares com entradas saturantes. In: XV Congresso Brasileiro de Automatica (CBA’2004), September 2004 Google Scholar
  60. 282.
    Pan, H., Kapila, V.: LMI-based control of discrete-time systems with actuator amplitude and rate nonlinearities. In: Kapila, V., Grigoriadis, K. (eds.) Actuator Saturation Control. Control Engineering Series, pp. 135–159. Dekker, New York (2002). Chap. 6 Google Scholar
  61. 293.
    Prieur, C., Teel, A.R.: Uniting local and global output feedback controllers. IEEE Trans. Autom. Control 56(7), 1636–1649 (2011) CrossRefGoogle Scholar
  62. 294.
    Prieur, C., Goebel, R., Teel, A.R.: Hybrid feedback control and robust stabilization of nonlinear systems. IEEE Trans. Autom. Control 52(11), 2103–2117 (2007) MathSciNetCrossRefGoogle Scholar
  63. 305.
    Roos, C., Biannic, J.-M., Tarbouriech, S., Prieur, C., Jeanneau, M.: On-ground aircraft control design using a parameter-varying anti-windup approach. Aerosp. Sci. Technol. 14, 459–471 (2010) CrossRefGoogle Scholar
  64. 306.
    Rugh, W.J., Shamma, S.J.: Research on gain scheduling. Automatica 36(10), 1401–1425 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  65. 313.
    Scherer, C.W.: LPV control and full block multipliers. Automatica 37(3), 361–375 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  66. 314.
    Scherer, C., Gahinet, P., Chilali, M.: Multiobjective output feedback control via LMI optimization. IEEE Trans. Autom. Control 42(7), 896–911 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  67. 319.
    Sepulchre, R., Jankovic, M., Kokotovic, P.: Constructive Nonlinear Control. Springer, London (1997) zbMATHGoogle Scholar
  68. 328.
    Sontag, E.D.: Input to state stability: basic concepts and results. In: Nistri, P., Stefani, G. (eds.) Nonlinear and Optimal Control Theory, pp. 163–220. Springer, Berlin (2007) Google Scholar
  69. 329.
    Sontag, E.D., Sussmann, H.J.: Nonlinear output feedback design for linear systems with saturating control. In: Conference on Decision and Control, Honolulu, USA, pp. 3414–3416 (1990) CrossRefGoogle Scholar
  70. 338.
    Sussmann, H.J., Sontag, E.D., Yang, Y.: A general result on the stabilization of linear systems using bounded controls. IEEE Trans. Autom. Control 39(12), 2411–2425 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  71. 347.
    Tarbouriech, S., Garcia, G.: Preliminary results about anti-windup strategy for systems subject to actuator and sensor saturations. In: IFAC World Congress, Prague (2005) Google Scholar
  72. 350.
    Tarbouriech, S., Gouaisbaut, F.: Stabilization of quantized linear systems with saturations. In: Conference on Decision and Control, Atlanta, USA, December 2010 Google Scholar
  73. 351.
    Tarbouriech, S., Gouaisbaut, F.: \(\mathcal{L}_{2}\) stability for quantized linear systems with saturations. In: IFAC World Congress, Milan, Italy, September 2011 Google Scholar
  74. 359.
    Tarbouriech, S., Prieur, C., Gomes da Silva Jr., J.M.: Stability analysis and stabilization of systems presenting nested saturations. IEEE Trans. Autom. Control 51(8), 1364–1371 (2006) MathSciNetCrossRefGoogle Scholar
  75. 361.
    Tarbouriech, S., Garcia, G., Glattfelder, A.H. (eds.): Advanced Strategies in Control Systems with Input and Output Constraints. LNCIS, vol. 346. Springer, Berlin (2007) zbMATHGoogle Scholar
  76. 364.
    Tarbouriech, S., Prieur, C., Queinnec, I., Simões dos Santos, T.: Global stability for systems with nested backlash and saturation operators. In: American Control Conference, Baltimore, USA, pp. 2665–2670 (2010) Google Scholar
  77. 365.
    Teel, A.R.: Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst. Control Lett. 18, 165–171 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  78. 379.
    Tyan, F., Bernstein, D.S.: Dynamic output feedback compensation for linear systems with independent amplitude and rate saturation. Int. J. Control 67(1), 89–116 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  79. 380.
    Valmorbida, G.: Analyse en stabilitè et synthèse de lois de commande pour des systèmes polynomiaux saturants. PhD thesis, University of Toulouse, Toulouse, France (2010). Rapport LAAS No. 10464 Google Scholar
  80. 381.
    Valmorbida, G., Tarbouriech, S., Garcia, G.: State feedback design for input-saturating quadratic systems. Automatica 46(7), 1196–1202 (2010) zbMATHCrossRefGoogle Scholar
  81. 408.
    Zaccarian, L., Nes̆ic̀, D., Teel, A.R.: First order reset elements and the Clegg integrator revisited. In: American Control Conference, Portland, OR, USA, pp. 563–568 (2005) Google Scholar
  82. 412.
    Zheng, Y., Chait, Y., Hollot, C.V., Steinbuch, M., Norg, M.: Experimental demonstration of reset control design. Control Eng. Pract. 8(2), 113–120 (2000) CrossRefGoogle Scholar
  83. 417.
    Zhou, B., Zheng, W.Y., Duan, G.-R.: An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation. Automatica 47, 306–315 (2011) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Sophie Tarbouriech
    • 1
    Email author
  • Germain Garcia
    • 2
  • João Manoel Gomes da SilvaJr.
    • 3
  • Isabelle Queinnec
    • 1
  1. 1.Laboratoire Analyse et Architecture des Systèmes (LAAS)CNRSToulouse CX 4France
  2. 2.Laboratoire Analyse et Architecture des Systèmes (LAAS)CNRSToulouse CX 4France
  3. 3.Departamento de Engenharia ElétricaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations