Advertisement

Linear Systems Subject to Control Saturation—Problems and Modeling

  • Sophie Tarbouriech
  • Germain Garcia
  • João Manoel Gomes da SilvaJr.
  • Isabelle Queinnec

Abstract

This chapter is dedicated to the statement of problems we are concerned with when controlling linear systems with saturating inputs. These problems are addressed in the book by different approaches and different models for the saturation term. With this aim in mind, we first present the system and the assumptions made. Then, the problems of stability analysis and stabilization are formally stated. These problems are formulated in the contexts of asymptotic stability as well as external stability (which arises when the system is subject to the action of external signals). An introduction is given to the anti-windup problem and different ways of modeling the saturation term are presented. These representations are particularly important when seeking numerical tractable conditions to the main problems considered.

Keywords

Asymptotic Stability Sector Condition Saturated System Quadratic Lyapunov Function Dynamic Output Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alamo, T., Cepeda, A., Limon, D.: Improved computation of ellipsoidal invariant sets for saturated control systems. In: Conference on Decision and Control, Sevilla, Spain, December, pp. 6216–6221 (2005) Google Scholar
  2. 2.
    Alamo, T., Cepeda, A., Limon, D., Camacho, E.F.: Estimation of the domain of attraction for saturated discrete-time systems. Int. J. Syst. Sci. 37(8), 575–583 (2006) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alamo, T., Cepeda, A., Fiacchini, M., Camacho, E.F.: Convex invariant sets for discrete-time Lur’e systems. Automatica 45, 1066–1071 (2009) MathSciNetMATHCrossRefGoogle Scholar
  4. 5.
    Alvarez-Ramirez, J., Suárez, R., Alvarez, J.: Semiglobal stabilization of multi-input linear system with saturated linear state feedback. Syst. Control Lett. 23, 247–254 (1994) MATHCrossRefGoogle Scholar
  5. 13.
    Aubin, J.P., Cellina, A.: Differential Inclusions. Comprehensive Studies in Mathematics, vol. 264. Springer, Berlin (1984) MATHGoogle Scholar
  6. 22.
    Benzaouia, A.: The resolution of equation XA+XBX=HX and the pole assignment problem. IEEE Trans. Autom. Control 39(10), 2091–2095 (1994) MathSciNetMATHCrossRefGoogle Scholar
  7. 23.
    Benzaouia, A., Burgat, C.: Regulator problem for linear discrete-time systems with nonsymmetrical constrained control. Int. J. Control 48(6), 2442–2451 (1988) MathSciNetCrossRefGoogle Scholar
  8. 30.
    Bitsoris, G.: On the positive invariance of polyhedral sets for discrete-time systems. Syst. Control Lett. 11(4), 243–248 (1988) MathSciNetMATHCrossRefGoogle Scholar
  9. 31.
    Bitsoris, G.: Existence of positively invariant polyhedral sets for continuous-time linear systems. Control Theory Adv. Technol. 7(3), 407–427 (1991) MathSciNetGoogle Scholar
  10. 32.
    Bitsoris, G., Vassilaki, M.: Constrained regulation of linear systems. Automatica 31(2), 223–227 (1995) MathSciNetMATHCrossRefGoogle Scholar
  11. 34.
    Blanchini, F.: Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions. IEEE Trans. Autom. Control 39(2), 428–433 (1994) MathSciNetMATHCrossRefGoogle Scholar
  12. 36.
    Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999) MathSciNetMATHCrossRefGoogle Scholar
  13. 37.
    Blanchini, F., Miani, S.: Best transient estimate for linear discrete-time uncertain systems. In: European Control Conference, Rome, Italy, pp. 1010–1015 (1995) Google Scholar
  14. 38.
    Blanchini, F., Miani, S.: Constrained stabilization of continuous-time linear systems. Syst. Control Lett. 28, 95–102 (1996) MathSciNetMATHCrossRefGoogle Scholar
  15. 39.
    Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Birkhäuser, Basel (2008) MATHGoogle Scholar
  16. 45.
    Boyd, S., El Ghaoui, L., Féron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1994) MATHGoogle Scholar
  17. 49.
    Burgat, C., Tarbouriech, S.: Global stability of a class of linear systems with saturated controls. Int. J. Syst. Sci. 23(1), 37–56 (1992) MathSciNetMATHCrossRefGoogle Scholar
  18. 50.
    Burgat, C., Tarbouriech, S.: Stability and control of saturated linear systems. In: Fossard, A.J., Normand-Cyrot, D. (eds.) Non-linear Systems, vol. 2. Chapman & Hall, London (1996). Chap. 4 Google Scholar
  19. 58.
    Castelan, E.B., Hennet, J.C.: Eigenstructure assignment for state constrained linear continuous time systems. Automatica 28(3), 605–611 (1992) MathSciNetMATHCrossRefGoogle Scholar
  20. 59.
    Castelan, E.B., Hennet, J.C.: On invariant polyhedra of continuous-time linear systems. IEEE Trans. Autom. Control 38(11), 1680–1685 (1993) MathSciNetMATHCrossRefGoogle Scholar
  21. 60.
    Castelan, E.B., Tarbouriech, S.: On positive invariance and output feedback stabilization of input constrained linear systems. In: American Control Conference, Baltimore, USA, vol. 3, pp. 2740–2744 (1994) Google Scholar
  22. 61.
    Castelan, E.B., Gomes da Silva Jr., J.M., Cury, J.E.R.: A reduced order framework applied to linear systems with constrained controls. IEEE Trans. Autom. Control 41(2), 249–255 (1996) MathSciNetMATHCrossRefGoogle Scholar
  23. 62.
    Castelan, E.B., Tarbouriech, S., Gomes da Silva Jr., J.M., Queinnec, I.: \(\mathcal{L}_{2}\)-stabilization of continuous-time systems with saturating actuators. Int. J. Robust Nonlinear Control 16, 935–944 (2006) MathSciNetMATHCrossRefGoogle Scholar
  24. 64.
    Chen, C.T.: Linear System Theory and Design. Holt, Rinehart & Winston, New York (1984) Google Scholar
  25. 70.
    Chitour, Y., Lin, Z.: Finite gain l p stabilization of discrete-time linear systems subject to actuator saturation: the case of p=1. IEEE Trans. Autom. Control 48(12), 2196–2198 (2003) MathSciNetCrossRefGoogle Scholar
  26. 73.
    Colaneri, P., Kučera, V., Longhi, S.: Polynomial approach to the control of SISO periodic systems subject to input constraint. Automatica 39, 1417–1424 (2003) MATHCrossRefGoogle Scholar
  27. 75.
    Coutinho, D.F., Gomes da Silva Jr., J.M.: Computing estimates of the region of attraction for rational control systems with saturating actuators. IET Control Theory Appl. 4(3), 315–325 (2010) MathSciNetCrossRefGoogle Scholar
  28. 78.
    Dai, D., Hu, T., Teel, A.R., Zaccarian, L.: Piecewise-quadratic Lyapunov functions for systems with dead zones or saturations. Syst. Control Lett. 58, 365–371 (2009) MathSciNetMATHCrossRefGoogle Scholar
  29. 85.
    Dórea, C.E.T., Hennet, J.C.: On (A,B)-invariance of polyhedral domains for discrete-time systems. In: Conference on Decision and Control, Kobe, Japan, pp. 4319–4324 (1996) Google Scholar
  30. 89.
    Fang, H., Lin, Z., Hu, T.: Analysis of linear systems in the presence of actuator saturation and \(\mathcal{L}_{2}\)-disturbances. Automatica 40(7), 1229–1238 (2004) MathSciNetMATHCrossRefGoogle Scholar
  31. 92.
    Fiacchini, M.: Convex difference inclusions for systems analysis and control. PhD thesis, Universidad de Sevilla, Spain, January 2010 Google Scholar
  32. 94.
    Fischman, A., Gomes da Silva Jr., J.M., Dugard, L., Dion, J.M., Tarbouriech, S.: Dynamic output feedback under state and control constraints. In: European Control Conference, Brussels, Belgium (1997) Google Scholar
  33. 97.
    Forni, F., Galeani, S., Zaccarian, L.: A family of global stabilizers for quasi-optimal control of planar linear saturated systems. IEEE Trans. Autom. Control 55(5), 1175–1180 (2010) MathSciNetCrossRefGoogle Scholar
  34. 99.
    Fuller, A.T.: In the large stability of relay and saturated control systems with actuator saturation. Int. J. Control 10(4), 457–480 (1969) MathSciNetMATHCrossRefGoogle Scholar
  35. 108.
    Galeani, S., Tarbouriech, S., Turner, M.C., Zaccarian, L.: A tutorial on modern anti-windup design. Eur. J. Control 15(3–4), 418–440 (2009) MathSciNetCrossRefGoogle Scholar
  36. 118.
    Garcia, G., Tarbouriech, S., Suárez, R., Alvarez-Ramirez, J.: Non linear bounded control for norm bounded uncertain system. IEEE Trans. Autom. Control 44(6), 1254–1258 (1999) MATHCrossRefGoogle Scholar
  37. 120.
    Garcia, G., Tarbouriech, S., Gomes da Silva Jr., J.M., Eckhard, D.: Finite L 2 gain and internal stabilisation of linear systems subject to actuator and sensor saturations. IET Control Theory Appl. 3(7), 799–812 (2009) MathSciNetCrossRefGoogle Scholar
  38. 122.
    Gavrilyako, V.M., Korobov, V.I., Sklyar, G.M.: Designing a bounded control of dynamic systems in entire space with the aid of a controllability function. Autom. Remote Control 11, 1484–1490 (1986) Google Scholar
  39. 126.
    Gilbert, E.G., Tan, K.T.: Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans. Autom. Control 36(9), 1008–1020 (1991) MathSciNetMATHCrossRefGoogle Scholar
  40. 127.
    Glattfelder, A.H., Schaufelberger, W.: Control Systems with Input and Output Constraints. Springer, London (2003) MATHCrossRefGoogle Scholar
  41. 130.
    Gomes da Silva Jr., J.M.: Sur la stabilité locale de systèmes linéaires avec saturation des commandes. PhD thesis, Université Paul Sabatier, Toulouse, France, October 1997. Rapport LAAS No. 97383 Google Scholar
  42. 131.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Analysis of local stability of linear systems with saturating controls: a polyhedral approach. In: IFAC Conference on Systems, Structure and Control, Bucharest, Romania, pp. 168–173 (1997) Google Scholar
  43. 134.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Stability regions for linear systems with saturating controls. In: European Control Conference, Karlsruhe, Germany (1999). F924 Google Scholar
  44. 135.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Contractive polyhedra for linear continuous-time systems with saturating controls. In: American Control Conference, San Diego, USA, pp. 2007–2010 (1999) Google Scholar
  45. 136.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Polyhedral regions of local stability for linear discrete-time systems with saturating controls. IEEE Trans. Autom. Control 44(11), 2081–2085 (1999) MathSciNetMATHCrossRefGoogle Scholar
  46. 137.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Local stabilization of discrete-time linear systems with saturating controls: an LMI-based approach. IEEE Trans. Autom. Control 46(1), 119–124 (2001) MathSciNetMATHCrossRefGoogle Scholar
  47. 138.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Anti-windup design with guaranteed regions of stability: an LMI-based approach. In: Conference on Decision and Control, Hawaii, USA (2003) Google Scholar
  48. 139.
    Gomes da Silva Jr., J.M., Tarbouriech, S.: Anti-windup design with guaranteed region of stability: an LMI-based approach. IEEE Trans. Autom. Control 50(1), 106–111 (2005) MathSciNetCrossRefGoogle Scholar
  49. 141.
    Gomes da Silva Jr., J.M., Fischman, A., Tarbouriech, S., Dion, J.M., Dugard, L.: Synthesis of state feedback for linear systems subject to control saturation by an LMI-based approach. In: IFAC Symposium on Robust Control Design (ROCOND), Budapest, Hungary, pp. 229–234 (1997) Google Scholar
  50. 144.
    Gomes da Silva Jr., J.M., Tarbouriech, S., Garcia, G.: Local stabilization of linear systems under amplitude and rate saturating actuators. IEEE Trans. Autom. Control 48(5), 842–847 (2003) MathSciNetCrossRefGoogle Scholar
  51. 146.
    Gomes da Silva Jr., J.M., Lescher, F., Eckhard, D.: Design of time-varying controllers for discrete-time linear systems with input saturation. IET Control Theory Appl. 1, 155–162 (2007) MathSciNetCrossRefGoogle Scholar
  52. 158.
    Gutman, P.O., Hagander, P.: A new design of constrained controllers for linear systems. IEEE Trans. Autom. Control 30, 22–33 (1985) MathSciNetMATHCrossRefGoogle Scholar
  53. 166.
    Hennet, J.C.: Une extension du lemme de Farkas et son application au problème de régulation linéaire sous contraintes. C. R. Acad. Sci., Ser. I 308, 415–419 (1989) MathSciNetMATHGoogle Scholar
  54. 167.
    Hennet, J.C., Béziat, J.P.: A class of invariant regulators for the discrete-time linear constrained regulation problem. Automatica 27(3), 549–554 (1991) MathSciNetMATHCrossRefGoogle Scholar
  55. 168.
    Hennet, J.C., Castelan, E.B.: Robust invariant controllers for constrained linear systems. In: American Control Conference, Chicago, USA, vol. 2, pp. 993–997 (1992) Google Scholar
  56. 169.
    Hennet, J.C., Castelan, E.B.: Constrained control of unstable multivariable linear systems. In: European Control Conference, Groningen,The Netherlands, pp. 2039–2043 (1993) Google Scholar
  57. 172.
    Henrion, D., Tarbouriech, S.: LMI relaxations for robust stability of linear systems with saturating controls. Automatica 35, 1599–1604 (1999) MathSciNetMATHCrossRefGoogle Scholar
  58. 174.
    Henrion, D., Garcia, G., Tarbouriech, S.: Piecewise-linear robust control of systems with input constraints. Eur. J. Control 5(1), 157–166 (1999) MATHGoogle Scholar
  59. 175.
    Henrion, D., Tarbouriech, S., Garcia, G.: Output feedback robust stabilization of uncertain linear systems with saturating controls: an LMI approach. IEEE Trans. Autom. Control 44(11), 2230–2237 (1999) MathSciNetMATHCrossRefGoogle Scholar
  60. 176.
    Henrion, D., Tarbouriech, S., Kučera, V.: Control of linear systems subject to input constraints: a polynomial approach. Automatica 37, 597–604 (2001) MATHCrossRefGoogle Scholar
  61. 177.
    Henrion, D., Tarbouriech, S., Kučera, V.: Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs. IEEE Trans. Autom. Control 50(9), 1360–1364 (2005) CrossRefGoogle Scholar
  62. 183.
    Hindi, H., Boyd, S.: Analysis of linear systems with saturation using convex optimization. In: Conference on Decision and Control, Tampa or, USA, pp. 903–908 (1998) Google Scholar
  63. 184.
    Hippe, P.: Windup in Control. Its Effects and Their Prevention. AIC/Springer, Berlin (2006) Google Scholar
  64. 187.
    Hu, T., Lin, Z.: On enlarging the basin of attraction for linear systems under saturated linear feedback. Syst. Control Lett. 40(1), 59–69 (2000) MathSciNetMATHCrossRefGoogle Scholar
  65. 188.
    Hu, T., Lin, Z.: Control Systems with Actuator Saturation: Analysis and Design. Birkhäuser, Boston (2001) MATHCrossRefGoogle Scholar
  66. 189.
    Hu, T., Lin, Z.: Composite quadratic Lyapunov functions for constrained control systems. IEEE Trans. Autom. Control 48(3), 440–450 (2003) MathSciNetCrossRefGoogle Scholar
  67. 192.
    Hu, T., Lin, Z., Chen, B.M.: Analysis and design for discrete-time linear systems subject to actuator saturation. Syst. Control Lett. 45(2), 97–112 (2002) MathSciNetMATHCrossRefGoogle Scholar
  68. 193.
    Hu, T., Lin, Z., Chen, B.M.: An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38, 351–359 (2002) MATHCrossRefGoogle Scholar
  69. 194.
    Hu, T., Lin, Z., Qiu, L.: An explicit description of null controllable regions of linear systems with saturating actuators. Syst. Control Lett. 47, 65–78 (2002) MathSciNetMATHCrossRefGoogle Scholar
  70. 196.
    Hu, T., Teel, A.R., Zaccarian, L.: Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions. IEEE Trans. Autom. Control 51(11), 1770–1786 (2006) MathSciNetCrossRefGoogle Scholar
  71. 198.
    Hu, T., Thibodeau, T., Teel, A.R.: Analysis of oscillation and stability for systems with piecewise linear components via saturation functions. In: American Control Conference, St. Louis, MO, USA, pp. 1911–1916 (2009) CrossRefGoogle Scholar
  72. 201.
    Johansson, M.: Piecewise linear control systems. PhD thesis, Lund Institute of Technology, Depto. of Automatic Control (Lund University), Lund, Sweden (1999) Google Scholar
  73. 202.
    Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Autom. Control 43(4), 555–559 (1998) MathSciNetMATHCrossRefGoogle Scholar
  74. 205.
    Kailath, T.: Linear Systems. Prentice Hall, Englewood Cliffs (1980) MATHGoogle Scholar
  75. 214.
    Kerrigan, E.C.: Robust constraint satisfaction: Invariant sets and predictive control. PhD thesis, University of Cambridge, Cambridge (2000) Google Scholar
  76. 215.
    Khalil, H.K.: Nonlinear Systems. MacMillan, London (1992) MATHGoogle Scholar
  77. 218.
    Kim, J., Bien, Z.: Robust stability of uncertain linear systems with saturating actuators. IEEE Trans. Autom. Control 39(1), 202–207 (1994) MathSciNetMATHCrossRefGoogle Scholar
  78. 220.
    Klaï, M.: Stabilisation des systèmes linéaires continus contraints sur la commande par retour d’état et sortie saturés. PhD thesis, Université Paul Sabatier, Toulouse, France (September 1994). Rapport LAAS No. 94323 Google Scholar
  79. 221.
    Kolmanovsky, I., Gilbert, E.G.: Maximal output admissible sets for discrete-time systems with disturbances inputs. In: American Control Conference, Seattle, USA, pp. 1995–1999 (1995) Google Scholar
  80. 223.
    Köse, I.E., Jabbari, F.: Scheduled controllers for linear systems with bounded actuators. Automatica 39, 1377–1387 (2003) MATHCrossRefGoogle Scholar
  81. 226.
    Kothare, M.V., Campo, P.J., Morari, M., Nett, C.N.: A unified framework for the study of anti-windup designs. Automatica 30(12), 1869–1883 (1994) MathSciNetMATHCrossRefGoogle Scholar
  82. 236.
    Lasserre, J.B.: Reachable, controllable sets and stabilizing control of constrained linear systems. Automatica 29(2), 531–536 (1992) MathSciNetCrossRefGoogle Scholar
  83. 240.
    Lin, Z.: Low gain and low-and-high gain feedback: a review and some recent results. In: Conference on Decision and Control, Shanghai, China, December 2009 Google Scholar
  84. 242.
    Lin, Z., Saberi, A.: Semi-global exponential stabilization of linear systems subject to input saturation via linear feedback. Syst. Control Lett. 21(3), 225–239 (1993) MathSciNetMATHCrossRefGoogle Scholar
  85. 243.
    Lin, Z., Saberi, A.: Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedback. Syst. Control Lett. 24(2), 125–132 (1995) MathSciNetMATHCrossRefGoogle Scholar
  86. 244.
    Lin, Z., Saberi, A.: Low-and-high gain design technique for linear systems subject to input saturation—a direct method. Int. J. Robust Nonlinear Control 7, 1091–1101 (1997) CrossRefGoogle Scholar
  87. 246.
    Lin, Z., Saberi, A., Teel, A.R.: Simultaneous \({\mathcal{L}}_{p}\) stabilization and internal stabilization of linear systems subject to input saturation: state feedback case. Syst. Control Lett. 25, 219–226 (1995) MathSciNetMATHCrossRefGoogle Scholar
  88. 247.
    Lin, Z., Saberi, A., Stoorvogel, A.A.: Semiglobal stabilization of linear discrete-time systems subject to input saturation via linear feedback—an ARE-based approach. IEEE Trans. Autom. Control 41(8), 1203–1207 (1996) MathSciNetMATHCrossRefGoogle Scholar
  89. 248.
    Lin, Z., Saberi, A., Teel, A.R.: The almost disturbance decoupling problem with internal stability for linear systems subject to input saturation—state feedback case. Automatica 32, 619–624 (1996) MathSciNetMATHCrossRefGoogle Scholar
  90. 254.
    Ma, C.C.H.: Instability of linear unstable system with inputs limits. ASME J. Dyn. Syst. Meas. Control 113, 742–744 (1991) CrossRefGoogle Scholar
  91. 258.
    Milani, B.E.A.: Piecewise-affine Lyapunov functions for discrete-time linear systems with saturating controls. Automatica 38, 2177–2184 (2002) MathSciNetMATHCrossRefGoogle Scholar
  92. 259.
    Milani, B.E.A., Carvalho, A.N.: Robust optimal linear regulator design for discrete-time systems under state and control constraints. In: IFAC Symposium on Robust Control Design (ROCOND), Rio de Janeiro, Brazil, pp. 273–278 (1994) Google Scholar
  93. 262.
    Molchanov, A.P., Pyatnitskii, E.S.: Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Syst. Control Lett. 13, 59–64 (1989) MathSciNetMATHCrossRefGoogle Scholar
  94. 271.
    Nguyen, T., Jabbari, F.: Disturbance attenuation for systems with input saturation: An LMI approach. IEEE Trans. Autom. Control 44, 852–857 (1999) MathSciNetMATHCrossRefGoogle Scholar
  95. 272.
    Nguyen, T., Jabbari, F.: Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation. In: American Control Conference, San Diego, USA, pp. 1997–2001 (1999) Google Scholar
  96. 273.
    Nguyen, T., Jabbari, F.: Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation. Automatica 36(9), 1339–1346 (2000) MathSciNetMATHCrossRefGoogle Scholar
  97. 280.
    Paim, C., Tarbouriech, S., Gomes da Silva Jr., J.M., Castelan, E.B.: Control design for linear systems with saturating actuators and L 2-bounded disturbances. In: Conference on Decision and Control, Las Vegas, USA (2002) Google Scholar
  98. 290.
    Pittet, C.: Stabilisation des systèmes à commande contrainte. application à une table d’excitation microdynamique. PhD thesis, Université Paul Sabatier, Toulouse, France (October 1998). Rapport LAAS No. 98434 Google Scholar
  99. 291.
    Pittet, C., Tarbouriech, S., Burgat, C.: Stability regions for linear systems with saturating controls via circle and Popov criteria. In: Conference on Decision and Control, San Diego, USA, pp. 4518–4523 (1997) Google Scholar
  100. 292.
    Pittet, C., Burgat, C., Tarbouriech, S.: Globally stabilizing controllers synthesis for linear systems with saturating inputs. In: IFAC Conference on Systems, Structure and Control, Nantes, France, vol. 2, pp. 391–396 (1998) Google Scholar
  101. 293.
    Prieur, C., Teel, A.R.: Uniting local and global output feedback controllers. IEEE Trans. Autom. Control 56(7), 1636–1649 (2011) CrossRefGoogle Scholar
  102. 297.
    Rao, V.G., Bernstein, D.S.: Naive control of the double integrator. IEEE Control Syst. Mag. 21(5), 86–97 (2001) CrossRefGoogle Scholar
  103. 299.
    Rocha, T.C.T.: Domínios positivamente invariantes de sistemas lineares com restrições na variáveis de controle. Master’s thesis, UFSC, Florianópolis, Brazil (July 1994) Google Scholar
  104. 300.
    Romanchuk, B.G.: Computing regions of attraction with polytopes: planar case. Automatica 32(12), 1727–1732 (1996) MathSciNetMATHCrossRefGoogle Scholar
  105. 302.
    Roos, C.: Contribution à la commande des systèmes saturés en présence d’incertitudes et de variations paramétriques. Application au pilotage de l’avion au sol. PhD thesis, University of Toulouse, ISAE, France, December 2007 Google Scholar
  106. 309.
    Saberi, A., Lin, Z., Teel, A.: Control of linear systems with saturating actuators. IEEE Trans. Autom. Control 41(3), 368–377 (1996) MathSciNetMATHCrossRefGoogle Scholar
  107. 310.
    Saberi, A., Stoorvogel, A.A., Sannuti, P.: Control of Linear Systems with Regulation and Input Constraints. Springer, London (2000) MATHGoogle Scholar
  108. 311.
    Saberi, A., Han, J., Stoorvogel, A.A.: Constrained stabilization problems for linear plants. Automatica 38, 639–654 (2002) MathSciNetMATHCrossRefGoogle Scholar
  109. 316.
    Schmitendorf, W.E., Barmish, B.R.: Null controllability of linear systems with constrained controls. SIAM J. Control Optim. 18, 327–345 (1980) MathSciNetMATHCrossRefGoogle Scholar
  110. 318.
    Scorletti, G., Folcher, J.P., El Ghaoui, L.: Output feedback control with input saturations: LMI design approaches. Eur. J. Control 7(6), 567–579 (2001) CrossRefGoogle Scholar
  111. 326.
    Sontag, E.D.: An algebraic approach to bounded controllability of linear systems. Int. J. Control 39(1), 181–188 (1984) MathSciNetMATHCrossRefGoogle Scholar
  112. 329.
    Sontag, E.D., Sussmann, H.J.: Nonlinear output feedback design for linear systems with saturating control. In: Conference on Decision and Control, Honolulu, USA, pp. 3414–3416 (1990) CrossRefGoogle Scholar
  113. 332.
    Stoorvogel, A.A., Wang, X., Saberi, A., Sannuti, P.: Stabilization of sandwich non-linear systems with low-and-high gain feedback design. In: American Control Conference, Baltimore, USA, pp. 4217–4222 (2010) Google Scholar
  114. 333.
    Su, Y., Müller, P.C., Zheng, C.: Global asymptotic saturated PID control for robot manipulators. IEEE Trans. Control Syst. Technol. 18(6), 1280–1288 (2010) Google Scholar
  115. 334.
    Suárez, R., Alvarez-Ramirez, J., Alvarez, J.: Linear systems with single saturated input: stability analysis. In: Conference on Decision and Control, Brighton, UK, pp. 223–228 (1991) Google Scholar
  116. 335.
    Suárez, R., Alvarez-Ramirez, J., Solis-Daun, J.: Linear systems with bounded inputs: global stabilization with eigenvalue placement. Int. J. Robust Nonlinear Control 7(9), 835–845 (1997) MATHCrossRefGoogle Scholar
  117. 336.
    Sun, W., Lin, Z., Wang, Y.: Global asymptotic and finite-gain \(\mathcal{L}_{2}\) stabilization of port-controlled Hamiltonian systems subject to actuator saturation. In: American Control Conference, St. Louis, USA, pp. 1894–1898 (2009) CrossRefGoogle Scholar
  118. 337.
    Sussmann, H.J., Yang, Y.: On the stability of multiple integrators by means of bounded controls. In: Conference on Decision and Control, Brighton, UK, pp. 70–72 (1991) Google Scholar
  119. 338.
    Sussmann, H.J., Sontag, E.D., Yang, Y.: A general result on the stabilization of linear systems using bounded controls. IEEE Trans. Autom. Control 39(12), 2411–2425 (1994) MathSciNetMATHCrossRefGoogle Scholar
  120. 341.
    Tarbouriech, S.: Sur la stabilité des régulateurs à retour d’état saturé. PhD thesis, Université Paul Sabatier, Toulouse, France (February 1991). Rapport LAAS No. 91047 Google Scholar
  121. 343.
    Tarbouriech, S., Burgat, C.: (A,B)-stabilizability conditions with respect to certain Lyapunov functions. In: IEEE Conference on Systems, Man and Cybernetics, Le Touquet, France, pp. 311–318 (1993) Google Scholar
  122. 344.
    Tarbouriech, S., Burgat, C.: Positively invariant sets for constrained continuous-time systems with cone properties. IEEE Trans. Autom. Control 39(2), 401–405 (1994) MathSciNetMATHCrossRefGoogle Scholar
  123. 345.
    Tarbouriech, S., Burgat, C.: Invariance property for linear discrete-time systems with bounded inputs via observer. In: American Control Conference, Seattle, USA, vol. 5, pp. 3914–3915 (1995) Google Scholar
  124. 346.
    Tarbouriech, S., Garcia, G. (eds.): Control of Uncertain Systems with Bounded Inputs. LNCIS, vol. 227. Springer, Berlin (1997) MATHGoogle Scholar
  125. 348.
    Tarbouriech, S., Gomes da Silva Jr., J.M.: Admissible polyhedra for discrete-time linear systems with saturating controls. In: American Control Conference, Albuquerque, USA, vol. 6, pp. 3915–3919 (1997) Google Scholar
  126. 352.
    Tarbouriech, S., Turner, M.C.: Anti-windup design: an overview of some recent advances and open problems. IET Control Theory Appl. 3(1), 1–19 (2009) MathSciNetCrossRefGoogle Scholar
  127. 353.
    Tarbouriech, S., Gomes da Silva Jr., J.M., Garcia, G.: Stability and disturbance tolerance for linear systems with bounded controls. In: European Control Conference, Porto, Portugal, pp. 3219–3224 (2001) Google Scholar
  128. 359.
    Tarbouriech, S., Prieur, C., Gomes da Silva Jr., J.M.: Stability analysis and stabilization of systems presenting nested saturations. IEEE Trans. Autom. Control 51(8), 1364–1371 (2006) MathSciNetCrossRefGoogle Scholar
  129. 361.
    Tarbouriech, S., Garcia, G., Glattfelder, A.H. (eds.): Advanced Strategies in Control Systems with Input and Output Constraints. LNCIS, vol. 346. Springer, Berlin (2007) MATHGoogle Scholar
  130. 365.
    Teel, A.R.: Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst. Control Lett. 18, 165–171 (1992) MathSciNetMATHCrossRefGoogle Scholar
  131. 366.
    Teel, A.R.: Semi-global stabilizability of linear null controllable systems with input nonlinearities. IEEE Trans. Autom. Control 40(1), 96–100 (1995) MathSciNetMATHCrossRefGoogle Scholar
  132. 380.
    Valmorbida, G.: Analyse en stabilitè et synthèse de lois de commande pour des systèmes polynomiaux saturants. PhD thesis, University of Toulouse, Toulouse, France (2010). Rapport LAAS No. 10464 Google Scholar
  133. 382.
    Valmorbida, G., Tarbouriech, S., Turner, M.C., Garcia, G.: Anti-windup for NDI quadratic systems. In: IFAC Symposium on Nonlinear Control Systems (NOLCOS), Bologna, Italy, pp. 1175–1180 (2010) Google Scholar
  134. 384.
    Vassilaki, M., Hennet, J.C., Bitsoris, G.: Feedback control of linear discrete-time systems under state and control constraints. Int. J. Control 47(6), 1727–1735 (1988) MathSciNetMATHCrossRefGoogle Scholar
  135. 389.
    Wada, N., Saeki, M.: An LMI based scheduling algorithm for constrained stabilization problems. Syst. Control Lett. 57, 255–261 (2008) MathSciNetMATHCrossRefGoogle Scholar
  136. 392.
    Wang, X., Stoorvogel, A.A., Saberi, A., Grip, H.F., Roy, S., Sannuti, P.: Stabilization of a class of sandwich systems via state feedback. IEEE Trans. Autom. Control 55(9), 2156–2160 (2010) MathSciNetCrossRefGoogle Scholar
  137. 395.
    Wredenhagen, G.F., Bélanger, P.R.: Piecewise-linear LQ control for systems with input constraints. Automatica 30(3), 403–416 (1994) MathSciNetMATHCrossRefGoogle Scholar
  138. 400.
    Wu, F., Lin, Z., Zheng, Q.: Output feedback stabilization of linear systems with actuator saturation. IEEE Trans. Autom. Control 52(1), 123–128 (2007) MathSciNetCrossRefGoogle Scholar
  139. 402.
    Yang, Y.: Global stabilization of linear systems with bounded controls. PhD thesis, Rutgers University (February 1993) Google Scholar
  140. 403.
    Yang, Y., Sussmann, H.J., Sontag, E.: Stabilization of linear systems with bounded controls. In: IFAC Nonlinear Control Systems Design Symposium (NOLCOS), Bordeaux, France, pp. 15–20 (1992) Google Scholar
  141. 413.
    Zhou, B., Duan, G.-R.: Global stabilisation of linear systems with bounded controls by nonlinear feedback. IET Control Theory Appl. 2(5), 409–419 (2008) MathSciNetCrossRefGoogle Scholar
  142. 415.
    Zhou, B., Duan, G., Lin, Z.: Global stabilization of the double integrator system with saturation and delay in the input. IEEE Trans. Circuits Syst. I 57(6), 1371–1383 (2010) MathSciNetCrossRefGoogle Scholar
  143. 416.
    Zhou, B., Lin, Z., Duan, G.-R.: Global and semi-global stabilization of linear systems with multiple delays and saturations in the inputs. SIAM J. Control Optim. 48(8), 5294–5332 (2010) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Sophie Tarbouriech
    • 1
  • Germain Garcia
    • 2
  • João Manoel Gomes da SilvaJr.
    • 3
  • Isabelle Queinnec
    • 1
  1. 1.Laboratoire Analyse et Architecture des Systèmes (LAAS)CNRSToulouse CX 4France
  2. 2.Laboratoire Analyse et Architecture des Systèmes (LAAS)CNRSToulouse CX 4France
  3. 3.Departamento de Engenharia ElétricaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations