Dry Cutting of SiC Particulates Reinforced Metal Matrix Composite

  • Arnaud KremerEmail author
  • Mohamed El Mansori


This chapter addresses the cutting of Metal Matrix Composite with SiC particulate reinforcement (MMCp) to highlight the physical mechanisms that govern the material removal in dry mode. The performance of a variety of polycrystalline diamond (PCD) tools and nanostructured diamond coatings are studied when cutting MMCp with different densities of SiC particulate reinforcement. The simultaneous occurrence of adhesive wear mode and interface consumption by abrasion, increases the role of the cutting tool structure (homogeneity, multiple interfaces, etc.). The use of an environmental criterion to rate the MMCp machinability shows that the process of dust emission is strongly related to tool behavior and the predominance of friction phenomena that arise at the tool/chip interface.


Wear Rate Tool Wear Tool Life Flank Wear Diamond Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Manna A, Bhattacharayya B (2003) A study on machinability of Al/SiC metal-matrix composites. J Mater Process Technol 140:711–716CrossRefGoogle Scholar
  2. 2.
    Chambers AR (1996) The machinability of light alloy MMCs. Composites Part A 27A:143–147CrossRefGoogle Scholar
  3. 3.
    El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites. Part I: Tool performance. J Mater Process Technol 83:151–158CrossRefGoogle Scholar
  4. 4.
    El-Gallab M, Sklad M (1998) Machining of Al SiC particulate metal matrix composites. Part II: Work piece surface integrity. J Mater Process Technol 83:277–285CrossRefGoogle Scholar
  5. 5.
    Iullanoa L, Settineria L, Gattob A (1998) High speed turning experiments on metal matrix composites. Composites Part A 29A:1501–1509CrossRefGoogle Scholar
  6. 6.
    Andrewes JEC, Feng Hsi-Yung, Lau WM (2000) Machining of an aluminium/SiC composite using diamond inserts. J Mater Process Technol 102:25–29CrossRefGoogle Scholar
  7. 7.
    Cappelli E, Pinzari F, Ascarelli P, Righini G (1996) Diamond nucleation and growth on different cutting tool materials: influence of substrate pre-treatments. Diamond Relat Mater 5:292–296CrossRefGoogle Scholar
  8. 8.
    Belmonte M, Ferro P, Fernandes AJS, Costa FM, Sacramento F, Silva RF (2003) Wear resistant CVD diamond tools for turning of sintered hard metals. Diamond Relat Mater 12:738–743CrossRefGoogle Scholar
  9. 9.
    Miranzo P, Osendi MI, Garcia E, Fernandes AJS, Silva VA, Costa FM, Silva RF (2002) Thermal conductivity enhancement in cutting tools by chemical vapor deposition diamond coating. Diamond Relat Mater 11:703–707CrossRefGoogle Scholar
  10. 10.
    Durante S, Rutteli G, Rabezzana F (1997) Aluminium based MMC machining with diamond coated cutting tools. Surf Coat Technol 94–95:632–640CrossRefGoogle Scholar
  11. 11.
    Vandevelde TCS, Vandierendonck K, Van Stappen M, Du Mong W, Perremans P (1999) Cutting applications of DLC, hard carbon and diamond films. Surf Coat Technol 113(1–2):80–85CrossRefGoogle Scholar
  12. 12.
    Shen CH (1996) The importance of diamond coated tools for agile manufacturing and dry machining. Surf Coat Technol 86–87(2):672–677CrossRefGoogle Scholar
  13. 13.
    Sanchez JM, Rubio E, Alvarez M, Sebastian MA, Marcos M (2005) Microstructural characterization of material adhered over cutting tool in the dry machining of aerospace aluminum alloys. J Mater Process Technol 164–165:911–918CrossRefGoogle Scholar
  14. 14.
    Hung NP, Yeo SH, Oon BE (1997) Effect of cutting fluid on the machinability of metal matrix composites. J Mater Process Technol 67:157–161CrossRefGoogle Scholar
  15. 15.
    Sutherland JW, Kulur VN, King NC (2000) An experimental investigation of air quality in wet and dry turning. Ann CIRP 49(7):61–64CrossRefGoogle Scholar
  16. 16.
    Bogli U, Blatter A, Pimenov SM, Obraztsova ED, Smolin AA, Maillat M, Leijala A, Burger J, Hintermann HE, Loubnin EN (1995) Diamond Relat Mater 4:1009Google Scholar
  17. 17.
    Schade A, Rosiwal SM, Singer RF (2007) Influence of surface topography of HF-CVD diamond films on self-mated planar sliding contacts in dry environments. Surf Coat Technol 201:6197–6205CrossRefGoogle Scholar
  18. 18.
    Devillez A, Lesko S, Mozer W (2004) Cutting tool crater wear measurement with white light interferometry. Wear 256(1–2):56–65CrossRefGoogle Scholar
  19. 19.
    World Health Organization (WHO) (1999) Hazard prevention and control in the work environment: airborne dust. WHO/SDE/OEH/99.14Google Scholar
  20. 20.
    World Health Organization (WHO) (2007) Workers’ health: global plan of action, sixtieth world health assembly. WHA60.26Google Scholar
  21. 21.
    Songmene V, Balout B, Masounave J (2008) Clean machining: experimental investigation on dust formation. Part I: Influence of machining parameters and chip formation. Int J Environ Conscious Des Manuf 14(1):1–16Google Scholar
  22. 22.
    Songmene V, Balout B, Masounave J (2008) Clean machining: experimental investigation on dust formation. Part II: Influence of machining strategies and drill condition. Int J Environ Conscious Des Manuf 14(1):17–33Google Scholar
  23. 23.
    Kremer A, El Mansori M (2009) Influence of nanostructured CVD diamond coatings on dust emission and machinability of SiC particle-reinforced metal matrix composite. Surf Coat Technol 204:1051–1055CrossRefGoogle Scholar
  24. 24.
    Khettabi R, Songmene V, Masounave J (2007) Effect of tool lead angle and chip formation mode on dust emission in dry cutting. J Mater Process Technol 194:100–109CrossRefGoogle Scholar
  25. 25.
    Balout B, Songmene V, Masounave J (2007) An experimental study of dust generation during dry drilling of pre-cooled and pre-heated workpiece material. J Manuf Processes 9(1):23–34CrossRefGoogle Scholar
  26. 26.
    Schulz H, Abele E, Sahm A, Institute of Production Engineering and Machine Tools, University of Technology, Darmstadt, GermanyGoogle Scholar
  27. 27.
    Childs THC (1971) A new visio-plasticity technique and a study of curly chip formation. Int J Mech Sci 13:373–387CrossRefGoogle Scholar
  28. 28.
    Kudo Hideaki (1965) Some new slip-line solutions for two-dimensional steady-state machining. Int J Mech Sci 7:43–55CrossRefGoogle Scholar
  29. 29.
    Dewhurst P (1978) On the non-uniqueness of the machining process. Proc R Soc London, Ser A 360:587–610CrossRefGoogle Scholar
  30. 30.
    Xiaoping L, Seah WKH (2001) Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear 247:161–171CrossRefGoogle Scholar
  31. 31.
    Arumugam P, Malshe A, Batzer S (2006) Dry machining of aluminum silicon alloy using polished CVD diamond coated cutting tools inserts. Surf Coat Technol 200:3399–3403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.LMPF, EA 4106, Arts et Metiers ParisTechChalons-en-ChampagneFrance
  2. 2.Mecasurf, EA 4496, Arts et Metiers ParisTechAix-en-ProvenceFrance

Personalised recommendations