Traditional Machining Processes of MMC

  • H. A. KishawyEmail author
  • S. Kannan
  • G. Parker


The present chapter focuses on the problems encountered during high-speed machining of Metal Matrix Composites (MMCs) and how it affects tool life, surface quality and integrity and cutting forces generated during different machining processes such as turning, drilling and milling. It should be mentioned here that most studies on the machinability of MMCs have been based entirely on experimental results while very few analytical models have yet been developed.


Feed Rate Tool Wear Tool Life Flank Wear Carbide Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rohatgi PK, Asthana R, Das S (1986) Solidification, structures, and properties of cast metal-ceramic particle composites. Int Mater Rev 31:115–139CrossRefGoogle Scholar
  2. 2.
    Hashim J, Looney L, Hashmi MSJ (2002) Particle distribution in cast metal matrix composites—Part I. J Mater Process Tech 123(2):251CrossRefGoogle Scholar
  3. 3.
    Zhou W, Xu ZM (1997) Casting of SiC reinforced metal matrix composites. J Mater Proc Tech 63(1–3):358CrossRefGoogle Scholar
  4. 4.
    Suresh S, Mortensen A, Needleman A (1993) Fundamentals of metal–matrix composites. Butterworth-Heinemann, UKGoogle Scholar
  5. 5.
    Chawla KK, Chawla N (2006) Metal-matrix composites. Kirk-Othmer encyclopedia of chemical technology. Wiley, NJGoogle Scholar
  6. 6.
    Tomac N, Tannessen K, Rasch FO (1992) Machinability of particulate aluminium matrix composites. CIRP Annals Manuf Tech 41(1):55–58CrossRefGoogle Scholar
  7. 7.
    Hung NP, Venkatesh VC, Loh NL (1998) Cutting tools for metal matrix composites. Key Eng Mater 138–140:289–326CrossRefGoogle Scholar
  8. 8.
    Kishawy HA, Kannan S, Balazinski M (2005) Analytical modeling of tool wear progression during turning particulate reinforced metal matrix composites. CIRP Annals Manuf Tech 54(1):55–58CrossRefGoogle Scholar
  9. 9.
    Chen P, Hoshi T (1992) High-performance machining of sic whisker-reinforced aluminium composite by self-propelled rotary tools. CIRP Annals—Manuf Tech 41(1):59CrossRefGoogle Scholar
  10. 10.
    Coelho RT et al. (1993) Conventional machining of an aluminium based Sic reinforced metal matrix composite (MMC) alloy. In: Proceedings of 30th Matador, ManchesterGoogle Scholar
  11. 11.
    Lin JT, Bhattacharyya D, Lane C (1995) Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear 181–183(Part-2):883CrossRefGoogle Scholar
  12. 12.
    Sahin Y (2004) Preparation and some properties of SiC particle reinforced aluminium alloy composites. Mater Des 24(8):671CrossRefGoogle Scholar
  13. 13.
    Tonshoff HK, Winkler J (1997) The influence of tool coatings in machining of magnesium. Surf Coat Tech 94–95:610CrossRefGoogle Scholar
  14. 14.
    El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites. Part I: Tool performance. J Mater Process Tech 83(1–3):151–158CrossRefGoogle Scholar
  15. 15.
    El-Gallab M, Sklad M (2000) Machining of Al/SiC particulate metal matrix composites. Part III: Comprehensive tool wear models. J Mater Process Tech 101(1–3):10CrossRefGoogle Scholar
  16. 16.
    Weinert K, Konig W (1993) A consideration of tool wear mechanism when Machining Metal Matrix Composites (MMC). CIRP Annals—Manuf Tech 42(1):95–98CrossRefGoogle Scholar
  17. 17.
    Yanming Q, Zehua Z (2000) Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites. J Mater Proc Tech 100(1–3):194CrossRefGoogle Scholar
  18. 18.
    Barnes S, Pashby IR, Mok DK (1996) The effect of workpiece temperature on the machinability of an aluminum/SiC MMC. J Manuf Sci Eng 118(3):422–427CrossRefGoogle Scholar
  19. 19.
    Ding X, Liew WYH, Liu D (2005) Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259(7–12):1225CrossRefGoogle Scholar
  20. 20.
    Weinert K et al (2001) Spanende bearbeitung von bauteilen aus al-matrix-verbundwerkstoffen. Materialwissenschaft und werkstofftechnik 32(5):447–461CrossRefMathSciNetGoogle Scholar
  21. 21.
    Manna A, Bhattacharayya B (2003) A study on machinability of Al/SiC-MMC. J Mater Process Tech 140(1–3):711CrossRefGoogle Scholar
  22. 22.
    Ciftci I, Turker M, Seker U (2004) Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites. Mater Des 25(3):251–255CrossRefGoogle Scholar
  23. 23.
    Songmene V, Balazinski M (2001) Machining of a Graphitic Sic-Reinforced Aluminium Metal Matrix Composites with Diamond Tools. CIRP International Seminar on Program in Innovative Manufacturing EngineeringGoogle Scholar
  24. 24.
    Liu CS, Zhao B, Gao GF (2002) Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al. J Mater Process Technol 129(1–3):96–199Google Scholar
  25. 25.
    Hocheng H et al (1997) Fundamental turning characteristics of a tribology-favored graphite/aluminum alloy composite material. Comp A Appl Sci Manuf 28(9–10):883CrossRefGoogle Scholar
  26. 26.
    Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Annals Manuf Tech 53(1):91–94CrossRefGoogle Scholar
  27. 27.
    Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tool Manuf 46(14):1795–1803CrossRefGoogle Scholar
  28. 28.
    Davim JP, Silva J, Baptista AM (2007) Experimental cutting model of metal matrix composites (MMCs). J Mater Process Tech 183(2–3):358CrossRefGoogle Scholar
  29. 29.
    Dabade UA, Dapkekar D, Joshi SS (2009) Modeling of chip–tool interface friction to predict cutting forces in machining of Al/SiCp composites. Int J Mach Tool Manuf 49(9):690–700CrossRefGoogle Scholar
  30. 30.
    Monaghan J, Brazil D (1998) Modelling the flow processes of a particle reinforced metal matrix composite during machining. Composites Part A: Appl Sci Manuf 29(1–2):87CrossRefGoogle Scholar
  31. 31.
    El-Gallab M, Sklad M (2004) Machining of aluminum/silicon carbide particulate metal matrix composites: Part IV. Residual stresses in the machined workpiece. J Mater Process Tech 152(1):23CrossRefGoogle Scholar
  32. 32.
    Ramesh MV et al (2001) Finite-element analysis of diamond turning of aluminium matrix composites. Comp Sci Technol 61(10):1449CrossRefGoogle Scholar
  33. 33.
    Zhu Y, Kishawy HA (2005) Influence of alumina particles on the mechanics of machining metal matrix composites. Int J Mach Tool Manuf 45(4–5):389CrossRefGoogle Scholar
  34. 34.
    Dandekar CR, Shin YR (2009) Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. 15th Fr Natl Conf Compos 40(8):1231–1239Google Scholar
  35. 35.
    Cronjager L, Meister D (1991) Machining of fibre and particle-reinforced aluminium. CIRP Annals—Manuf Tech 41(1):63–66CrossRefGoogle Scholar
  36. 36.
    Cronjager L, Meister D (1992) Machining of fibre and particle-reinforced aluminum. Annals CIRP 41(1):63–66CrossRefGoogle Scholar
  37. 37.
    Coelho RT, Yamada, S, IeRoux, T, Aspinwall, DK, Wis, MLH (1993) Conventional machining of an aluminium based SIC reinforced metal matrix composite (MMC) alloy. Proceeding of the 30th MATADOR, Manchester, pp 125–133Google Scholar
  38. 38.
    Coelho RT, Aspinwall DK, Wise MLH (1994) Drilling and reaming aluminium-based Metal Matrix Composites (MMC) using PCD tooling. Trans NAMRI/SMEGoogle Scholar
  39. 39.
    Lane C (1990) Machining characteristics of particulate-reinforced aluminum. In: Fabrication of particle reinforced metal composites. ASM, OhioGoogle Scholar
  40. 40.
    Jawaid A, Barnes S, Ghadimzadeh SR (1992) Drilling of particulate aluminum silicon carbide metal matrix composites. Proceeding of the ASM Mater Workshop, Chicago, ILGoogle Scholar
  41. 41.
    Venkatesh VC et al. (2001) Micro-drilling of composite. In: International Conferrence on Material for Advanced Technologies. Sun Tech City, SingaporeGoogle Scholar
  42. 42.
    Narutaki N (1996) Mach MMC’s. Vdi berichte 1276:359–370Google Scholar
  43. 43.
    Songmene V, Balazinski M (1999) Machinability of graphitic metal matrix composites as a function of reinforcing particles. CIRP Annals—Manuf Tech 48(1):77CrossRefGoogle Scholar
  44. 44.
    Songmene V, Stephenson TF, Waner AEM (1997) Machinability of Graphitic Silicon Carbide Aluminum Metal Matrix Composite GrA-NiTM. ASME Int. Mech. Eng. Congr. and Expo. Dallas, TexasGoogle Scholar
  45. 45.
    Tosun G, Muratoglu M (2004) The drilling of an Al/SiCp metal-matrix composites. Part I: Microstructure. Comp Sci Technol 64(2):299–308CrossRefGoogle Scholar
  46. 46.
    Basavarajappa S et al (2007) Drilling of hybrid metal matrix composites—workpiece surface integrity. Int J Mach Tools Manuf 47(1):92CrossRefGoogle Scholar
  47. 47.
    Lane C, Finn M (1992) Observations on using CVD diamond in milling MMCs. In: Machining and the physics of the machining process. TMS, Chicago, ILGoogle Scholar
  48. 48.
    Chandrasekaran H, Johansson J (1996) On the behaviour of fibre/particle reinforced aluminium alloy matrix composites in milling and grinding. VDI Berichte 1276:463–478Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Engineering and Applied ScienceUniversity of Ontario Institute of TechnologyONCanada
  2. 2.Manufacturing Technology GroupDerbyUK

Personalised recommendations