Mechanics and Modeling of Chip Formation in Machining of MMC

  • Yung C. ShinEmail author
  • Chinmaya Dandekar


Metal matrix composites (MMCs) offer high strength-to-weight ratio, high stiffness and good damage resistance over a wide range of operating conditions, making them an attractive option in replacing conventional materials for many engineering applications. Typically the metal matrix materials of MMCs are aluminum alloys, titanium alloys, copper alloys and magnesium alloys, while the reinforcement materials are silicon carbide, aluminum oxide, boron carbide, graphite etc. in the form of fibers, whiskers and particles. This chapter covers the mechanics of chip formation during machining of MMCs and various modeling techniques. Especially, modeling techniques dealing with cutting force, chip morphology, temperature and subsurface damage are covered.


Tool Wear Flank Wear Thrust Force Cutting Force Chip Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Weinert K, König W (1993) A consideration of tool wear mechanism when machining Metal Matrix Composites (MMC). Ann CIRP 42(1):95–98. doi: 10.1016/s0007-8506(07)62400-7 CrossRefGoogle Scholar
  2. 2.
    Quigley O, Monaghan J, O’Reilly P (1994) Factors affecting the machinability of an Al/SiC metal-matrix composite. J Mater Process Tech 43(1):21–36. doi: 10.1016/0924-0136(94)90159-7 CrossRefGoogle Scholar
  3. 3.
    Lin JT, Bhattacharyya D, Lane C (1995) Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear 181–183(Part 2):883–888. doi: 10.1016/0043-1648(95)90211-2 CrossRefGoogle Scholar
  4. 4.
    El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites. Part I: Tool performance. J Mater Process Tech 83(1–3):151–158. doi: 10.1016/s0924-0136(98)00054-5 CrossRefGoogle Scholar
  5. 5.
    Andrewes CJE, Feng H-Y, Lau WM (2000) Machining of an aluminum/SiC composite using diamond inserts. J Mater Process Tech 102(1–3):25–29. doi: 10.1016/s0924-0136(00)00425-8 CrossRefGoogle Scholar
  6. 6.
    El-Gallab M, Sklad M (2000) Machining of Al/SiC particulate metal matrix composites. Part III: Comprehensive tool wear models. J Mater Process Tech 101(1–3):10–20. doi: 10.1016/s0924-0136(99)00351-9 CrossRefGoogle Scholar
  7. 7.
    Quan Y, Zhou Z (2000) Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites. J Mater Process Tech 100(1–3):194–199. doi: 10.1016/s0924-0136(99)00405-7 Google Scholar
  8. 8.
    El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal matrix composites. Part II: Workpiece surface integrity. J Mater Process Tech 83(1–3):277–285. doi: 10.1016/s0924-0136(98)00072-7 CrossRefGoogle Scholar
  9. 9.
    Manna A, Bhattacharayya B (2003) A study on machinability of Al/SiC-MMC. J Mater Process Tech 140(1–3):711–716. doi: 10.1016/s0924-0136(03)00905-1 CrossRefGoogle Scholar
  10. 10.
    Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tool Manu 48(15):1613–1625. doi: 10.1016/j.ijmachtools.2008.07.008 CrossRefGoogle Scholar
  11. 11.
    Manna A, Bhattacharyya B (2004) Investigation for optimal parametric combination for achieving better surface finish during turning of Al/SiC-MMC. Int J Adv Manuf Tech 23:658–665. doi: 10.1007/s00170-003-1624-z CrossRefGoogle Scholar
  12. 12.
    Ozben T, Kilickap E, ÇakIr O (2008) Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J Mater Process Tech 198(1–3):220–225. doi: 10.1016/j.jmatprotec.2007.06.082 CrossRefGoogle Scholar
  13. 13.
    Wang J, Huang CZ, Song WG (2003) The effect of tool flank wear on the orthogonal cutting process and its practical implications. J Mater Process Tech 142(2):338–346. doi: 10.1016/s0924-0136(03)00604-6 CrossRefGoogle Scholar
  14. 14.
    Manna A, Bhattacharayya B (2005) Influence of machining parameters on the machinability of particulate reinforced Al/SiC-MMC. Int J Adv Manuf Tech 25:850–856. doi: 10.1007/s00170-003-1917-2 CrossRefGoogle Scholar
  15. 15.
    Kannan S, Kishawy HA, Balazinski M (2006) Flank wear progression during machining metal matrix composites. J Manuf Sci E-T ASME 128:787–791. doi: 10.1115/1.2164508 CrossRefGoogle Scholar
  16. 16.
    Muthukrishnan N, Murugan M, Prahlada Rao K (2008) Machinability issues in turning of Al-SiC (10 p) metal matrix composites. Int J Adv Manuf Tech 39:211–218. doi: 10.1007/s00170-007-1220-8 CrossRefGoogle Scholar
  17. 17.
    Davim JP (2002) Diamond tool performance in machining metal-matrix composites. J Mater Process Tech 128(1–3):100–105. doi: 10.1016/s0924-0136(02)00431-4 CrossRefGoogle Scholar
  18. 18.
    Joshi SS, Ramakrishnan N, Nagarwalla HE, Ramakrishnan P (1999) Wear of rotary carbide tools in machining of Al/SiCp composites. Wear 230(2):124–132. doi: 10.1016/s0043-1648(99)00092-7 CrossRefGoogle Scholar
  19. 19.
    Pramanik A, Zhang LC, Arsecularatne JA (2007) An FEM investigation into the behaviour of metal matrix composites: tool-particle interaction during orthogonal cutting. Int J Mach Tool Manu 47(10):1497–1506. doi: 10.1016/j.ijmachtools.2006.12.004 CrossRefGoogle Scholar
  20. 20.
    Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. Ann CIRP 53(1):91–94. doi: 10.1016/s0007-8506(07)60652-0 CrossRefGoogle Scholar
  21. 21.
    Davim JP (2003) Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. J Mater Process Tech 132(1–3):340–344. doi: 10.1016/s0924-0136(02)00946-9 CrossRefGoogle Scholar
  22. 22.
    Monaghan J, Brazil D (1997) Modeling the sub-surface damage associated with the machining of a particle reinforced MMC. Comp Mater Sci 9(1–2):99–107. doi: 10.1016/s0927-0256(97)00063-3 CrossRefGoogle Scholar
  23. 23.
    El-Gallab MS, Sklad MP (2004) Machining of aluminum/silicon carbide particulate metal matrix composites. Part IV: Residual stresses in the machined workpiece. J Mater Process Tech 152(1):23–34. doi: 10.1016/j.jmatprotec.2004.01.061 CrossRefGoogle Scholar
  24. 24.
    Davim JP, Baptista AM (2000) Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminum. J Mater Process Tech 103(3):417–423. doi: 10.1016/s0924-0136(00)00495-7 CrossRefGoogle Scholar
  25. 25.
    Chambers AR (1996) The machinability of light alloy MMCs. Composites Part A-Appl S 27(2):143–147. doi: 10.1016/1359-835x(95)00001-i CrossRefMathSciNetGoogle Scholar
  26. 26.
    Ciftci I, Turker M, Seker U (2004) Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites. Mater Des 25(3):251–255. doi: 10.1016/j.matdes.2003.09.019 CrossRefGoogle Scholar
  27. 27.
    Ding X, Liew WYH, Liu XD (2005) Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259(7–12):1225–1234. doi: 10.1016/j.wear.2005.02.094 CrossRefGoogle Scholar
  28. 28.
    Tomac N, Tannessen K, Rasch FO (1992) Machinability of particulate aluminium matrix composites. Ann CIRP 41(1):55–58. doi: 10.1016/s0007-8506(07)61151-2 CrossRefGoogle Scholar
  29. 29.
    Arsecularatne JA, Zhang LC, Montross C (2006) Wear and tool life of tungsten carbide, PCBN and PCD cutting tools. Int J Mach Tool Manu 46(5):482–491. doi: 10.1016/j.ijmachtools.2005.07.015 CrossRefGoogle Scholar
  30. 30.
    Hung NP, Zhong CH (1996) Cumulative tool wear in machining metal matrix composites. Part I: Modelling. J Mater Process Tech 58(1):109–113. doi: 10.1016/0924-0136(95)02114-0 CrossRefGoogle Scholar
  31. 31.
    Heath PJ (2001) Developments in applications of PCD tooling. J Mater Process Tech 116(1):31–38. doi: 10.1016/s0924-0136(01)00837-8 CrossRefGoogle Scholar
  32. 32.
    Hyde AR (1990) Ceramic matrix composites. Mater Des 11(1):30–36. doi: 10.1016/0261-3069(90)90087-z CrossRefMathSciNetGoogle Scholar
  33. 33.
    Komanduri R (1997) Machining of fiber-reinforced composites. Mach Sci Technol 1:113–152CrossRefGoogle Scholar
  34. 34.
    Varadarajan YS, Vijayaraghavan L, Krishnamurthy R (2002) The machinability characteristics of aluminosilicate fiber reinforced Al alloy composite. Mater Manuf Process 17:811–824. doi: 10.1081/AMP-120016059 CrossRefGoogle Scholar
  35. 35.
    Weinert K, Lange M (2003) Machining of fibre reinforced magnesium. In: Proceedings of the second Osaka international conference on platform science and technology for advanced magnesium alloys 2003, Jan 26, 2003–Jan 30, 2003, Osaka, Japan. Materials science forum. Trans Tech Publications Ltd, pp 823–828Google Scholar
  36. 36.
    Dandekar CR, Shin YC (2010) Laser-assisted machining of a fiber reinforced metal matrix composite. J Manuf Sci E-T ASME 132(6):061004–061008. doi: 10.1115/1.4002548 CrossRefGoogle Scholar
  37. 37.
    Davim JP (2007) Application of merchant theory in machining particulate metal matrix composites. Mater Des 28(10):2684–2687. doi: 10.1016/j.matdes.2006.10.015 CrossRefGoogle Scholar
  38. 38.
    Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275CrossRefGoogle Scholar
  39. 39.
    Waldorf DJ (2006) A simplified model for ploughing forces in turning. J Manuf Processes 8:76–82CrossRefGoogle Scholar
  40. 40.
    Yan C, Zhang L (1994) Single-point scratching of 6061 Al alloy reinforced by different ceramic particles. Appl Compos Mater 1:431–447CrossRefGoogle Scholar
  41. 41.
    Zhang LC (2009) Cutting composites: a discussion on mechanics modelling. J Mater Process Tech 209(9):4548–4552. doi: 10.1016/j.jmatprotec.2008.10.023 CrossRefGoogle Scholar
  42. 42.
    Boothroyd G, Knight WA (2005) Fundamentals of machining and machine tools. crc mechanical engineering, 3rd edn. CRC Pr I Llc, Boca Raton, FloridaGoogle Scholar
  43. 43.
    Liu J, Chou YK (2007) Cutting tool temperature analysis in heat-pipe assisted composite machining. J Manuf Sci E-T ASME 129:902–910. doi: 10.1115/1.2752528 CrossRefGoogle Scholar
  44. 44.
    Weiner JH (1955) Shear-plane temperature distribution in orthogonal cutting. T ASME 77(8):1331–1336Google Scholar
  45. 45.
    Rapier AC (1954) A theoretical investigation of the temperature distribution in the metal cutting process. Brit J Appl Phys 5(11):400–405. doi: 10.1088/0508-3443/5/11/306 CrossRefGoogle Scholar
  46. 46.
    Kalpakjian S (1996) Manufacturing processes for engineering materials. Addison-Wesley, Reading, MAGoogle Scholar
  47. 47.
    Karthikeyan R, Ganesan G, Nagarazan RS, Pai BC (2001) A critical study on machining of Al/SiC composites. Mater Manuf Process 16:47–60. doi: 10.1081/AMP-100103696 CrossRefGoogle Scholar
  48. 48.
    Monaghan J, Brazil D (1998) Modelling the flow processes of a particle reinforced metal matrix composite during machining. Composites Part A-Appl S 29(1–2):87–99. doi: 10.1016/s1359-835x(97)00047-x CrossRefGoogle Scholar
  49. 49.
    Hung NP, Yeo SH, Lee KK, Ng KJ (1998) Chip formation in machining particle-reinforced metal matrix composites. Mater Manuf Process 13:85–100CrossRefGoogle Scholar
  50. 50.
    Hung NP, Loh NL, Venkatesh VC (1999) Machining of metal matrix composites. In: Jahanmir S, Ramulu M, Koshy P (eds) Machining of ceramics and composites. Marcel Dekker Inc, New York, pp 295–356Google Scholar
  51. 51.
    Joshi SS, Ramakrishnan N, Ramakrishnan P (2001) Micro-structural analysis of chip formation during orthogonal machining of Al/SiCp composites. J Eng Mater-T ASME 123:315–321. doi: 10.1115/1.1356026 CrossRefGoogle Scholar
  52. 52.
    Koplev A, Lystrup A, Vorm T (1983) The cutting process, chips, and cutting forces in machining CFRP. Composites 14(4):371–376. doi: 10.1016/0010-4361(83)90157-x CrossRefGoogle Scholar
  53. 53.
    Takeyama H, Iijima N (1988) Machinability of glassfiber reinforced plastics and application of ultrasonic machining. Ann CIRP 37(1):93–96. doi: 10.1016/s0007-8506(07)61593-5 CrossRefGoogle Scholar
  54. 54.
    Kim KS, Lee DG, Kwak YK, Namgung S (1992) Machinability of carbon fiber-epoxy composite materials in turning. J Mater Process Tech 32(3):553–570. doi: 10.1016/0924-0136(92)90253-o CrossRefGoogle Scholar
  55. 55.
    Nayak D, Bhatnagar N, Mahajan P (2005) Machining studies of uni-directional glass fiber reinforced plastic (UD-GFRP) composites. Part 1: Effect of geometrical and process parameters. Mach Sci Technol 9:481–501. doi: 10.1080/10910340500398167 CrossRefGoogle Scholar
  56. 56.
    Wang XM, Zhang LC (1999) Machining damage in unidirectional fiber-reinforced plastics. In: Wan J, Scott W, Zhang LC (eds) Abrasive technology—current development and applications. World Scientific, Singapore, pp 429–436Google Scholar
  57. 57.
    Zhang LC, Zhang HJ, Wang XM (2001) A force prediction model for cutting unidirectional fibre-reinforced plastics. Mach Sci Technol 5:293–305. doi: 10.1081/MST-100108616 CrossRefGoogle Scholar
  58. 58.
    Bergman F, Jacobson S (1994) Tool wear mechanisms in intermittent cutting of metal matrix composites. Wear 179(1–2):89–93. doi: 10.1016/0043-1648(94)90224-0 CrossRefGoogle Scholar
  59. 59.
    Mackerle J (1998) Finite-element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Tech 86(1–3):17–44. doi: 10.1016/s0924-0136(98)00227-1 Google Scholar
  60. 60.
    Mackerle J (2003) Finite element analysis and simulation of machining: an addendum: a bibliography (1996–2002). Int J Mach Tool Manu 43(1):103–114. doi: 10.1016/s0890-6955(02)00162-1 CrossRefGoogle Scholar
  61. 61.
    Soo SL, Aspinwall DK (2007) Developments in modeling of metal cutting processes. In: IMechE, vol. 221, Part L: J Mater Design Appl, pp 197–211Google Scholar
  62. 62.
    ABAQUS User’s Manual, Version 6.5 (2004) Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RIGoogle Scholar
  63. 63.
    Olovsson L, Nilsson L, Simonsson K (1999) An ALE formulation for the solution of two-dimensional metal cutting problems. Comput Struct 72(4–5):497–507. doi: 10.1016/s0045-7949(98)00332-0 CrossRefzbMATHGoogle Scholar
  64. 64.
    Movahhedy MR, Altintas Y, Gadala MS (2002) Numerical analysis of metal cutting with chamfered and blunt tools. J Manuf Sci E-T ASME 124:178–188. doi: 10.1115/1.1445147 CrossRefGoogle Scholar
  65. 65.
    Movahhedy M, Gadala MS, Altintas Y (2000) Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element method. J Mater Process Tech 103(2):267–275. doi: 10.1016/s0924-0136(00)00480-5 CrossRefGoogle Scholar
  66. 66.
    Tian Y, Shin YC (2004) Finite element modeling of machining of 1020 steel including the effects of round cutting edge. In: Papers Presented at NAMRC 32, June 1, 2004–June 4, 2004, Charlotte, NC, United states, Transactions of the North American Manufacturing Research Institute of SME. Society of Manufacturing Engineers, pp 111–118Google Scholar
  67. 67.
    Özel T, Zeren E (2005) Finite element method simulation of machining of AISI 1045 Steel with a Round Edge Cutting Tool. In: Proceedings of 8th CIRP international workshop on modeling of machining operations. Chemnitz, GermanyGoogle Scholar
  68. 68.
    Ozel T, Zeren E (2007) Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. Int J Adv Manuf Tech 35:255–267. doi: 10.1007/s00170-006-0720-2 CrossRefGoogle Scholar
  69. 69.
    Haglund AJ, Kishawy HA, Rogers RJ (2008) An exploration of friction models for the chip-tool interface using an Arbitrary Lagrangian-Eulerian finite element model. Wear 265(3–4):452–460. doi: 10.1016/j.wear.2007.11.025 CrossRefGoogle Scholar
  70. 70.
    Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti-6Al-4 V) via LAM and hybrid machining. Int J Mach Tools Manuf 50(2):174–182. doi: 10.1016/j.ijmachtools.2009.10.013 CrossRefGoogle Scholar
  71. 71.
    Camus G (2000) Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites: application to a 2D SiC/SiC. Int J Solids Struct 37(6):919–942. doi: 10.1016/s0020-7683(99)00065-7 CrossRefzbMATHGoogle Scholar
  72. 72.
    Arola D, Ramulu M (1997) Orthogonal cutting of fiber-reinforced composites: a finite element analysis. Int J Mech Sci 39(5):597–613. doi: 10.1016/s0020-7403(96)00061-6 CrossRefzbMATHGoogle Scholar
  73. 73.
    Arola D, Sultan MB, Ramulu M (2002) Finite element modeling of edge trimming fiber reinforced plastics. J Manuf Sci E-T ASME 124:32–41CrossRefGoogle Scholar
  74. 74.
    Nayak D, Bhatnagar N, Mahajan P (2005) Machining studies of ud-frp composites. Part 2: Finite element analysis. Mach Sci Technol 9:503–528. doi: 10.1080/10910340500398183 CrossRefGoogle Scholar
  75. 75.
    Rao GVG, Mahajan P, Bhatnagar N (2007) Machining of UD-GFRP composites chip formation mechanism. Compos Sci Technol 67(11–12):2271–2281. doi: 10.1016/j.compscitech.2007.01.025 Google Scholar
  76. 76.
    Rao GVG, Mahajan P, Bhatnagar N (2007) Micro-mechanical modeling of machining of FRP composites—cutting force analysis. Compos Sci Technol 67(3–4):579–593. doi: 10.1016/j.compscitech.2006.08.010 CrossRefGoogle Scholar
  77. 77.
    Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high rates and high temperatures. In: Proceedings of the seventh international symposium on ballistics. The Hague, the Netherlands, pp 541–547Google Scholar
  78. 78.
    Norton FH (1929) Creep of steel at high temperature. McGraw-Hill, New YorkGoogle Scholar
  79. 79.
    HOFF NJ (1954) Approximate analysis of structures in the presence of moderately large creep deformations. Q Appl Math 12:49–55Google Scholar
  80. 80.
    Dandekar CR, Shin YC (2009) Multi-step 3D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Composites Part A: Appl Sci Manuf 40(8):1231–1239. doi: 10.1016/j.compositesa.2009.05.017 CrossRefGoogle Scholar
  81. 81.
    Zhou L, Huang ST, Wang D, Yu XL (2011) Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools. Int J Adv Manuf Tech 52:619–626. doi: 10.1007/s00170-010-2776-2 CrossRefGoogle Scholar
  82. 82.
    Macdougall DAS, Harding J (1999) A constitutive relation and failure criterion for Ti6Al4 V alloy at impact rates of strain. J Mech Phys Solids 47(5):1157–1185. doi: 10.1016/s0022-5096(98)00086-6 CrossRefzbMATHGoogle Scholar
  83. 83.
    Follansbee PS, Gray GT III (1989) An analysis of the low temperature, low and high strain-rate deformation of Ti-6Al-4 V. Metall Trans A 20A:863–874CrossRefGoogle Scholar
  84. 84.
    Nemat-Nasser S, Guo W-G, Nesterenko VF, Indrakanti SS, Gu Y-B (2001) Dynamic response of conventional and hot isostatically pressed Ti-6Al-4 V alloys: experiments and modeling. Mech Mater 33:425–439. doi: 10.1016/S0167-6636(01)00063-1 CrossRefGoogle Scholar
  85. 85.
    Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  86. 86.
    Marusich TD, Ortiz M (1995) Simulation of chip formation in high-speed machining. In: Proceedings of the 1995 joint ASME applied mechanics and materials conference, Machining of Advanced Materials, AMD, pp 127–139Google Scholar
  87. 87.
    Cantonwine PE (2003) Strength of thermally exposed alumina fibers. Part I: Single filament behavior. J Mater Sci 38:461–470. doi: 10.1023/A:1021867530979 CrossRefGoogle Scholar
  88. 88.
    3M (2004) Nextel™ Ceramic textilestechnical notebook. St. Paul, MNGoogle Scholar
  89. 89.
    Bansal NP (2005) Handbook of ceramic composites. Kluwer Academic Publishers, New YorkCrossRefGoogle Scholar
  90. 90.
    Orifici AC, Herszberg I, Thomson RS (2008) Review of methodologies for composite material modelling incorporating failure. Comput Struct 86(1–3):194–210. doi: 10.1016/j.compstruct.2008.03.007 CrossRefGoogle Scholar
  91. 91.
    Dandekar CR, Shin YC (2008) Multiphase finite element modeling of machining unidirectional composites: prediction of debonding and fiber damage. J Manuf Sci E-T ASME 130:0510161–05101612. doi: 10.1115/1.2976146 CrossRefGoogle Scholar
  92. 92.
    Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech-T ASME 54:525–531CrossRefzbMATHGoogle Scholar
  93. 93.
    Tvergaard V (1990) Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng 125(2):203–213. doi: 10.1016/0921-5093(90)90170-8 CrossRefGoogle Scholar
  94. 94.
    Xu XP, Needleman A (1995) Numerical simulations of dynamic crack growth along an interface. Int J Fracture 74:289–324CrossRefGoogle Scholar
  95. 95.
    Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938. doi: 10.1016/0020-7683(95)00255-3 CrossRefzbMATHGoogle Scholar
  96. 96.
    Chandra N, Li H, Shet C, Ghonem H (2002) Some issues in the application of cohesive zone models for metal-ceramic interfaces. Int J Solids Struct 39(10):2827–2855. doi: 10.1016/s0020-7683(02)00149-x CrossRefzbMATHGoogle Scholar
  97. 97.
    Xie JQ, Bayoumi AE, Zbib HM (1998) FEA modeling and simulation of shear localized chip formation in metal cutting. Int J Mach Tool Manu 38(9):1067–1087. doi: 10.1016/s0890-6955(97)00063-1 CrossRefGoogle Scholar
  98. 98.
    Bäker M, Rösler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80(5–6):495–513. doi: 10.1016/s0045-7949(02)00023-8 CrossRefGoogle Scholar
  99. 99.
    Simoneau A, Ng E, Elbestawi MA (2006) Chip formation during microscale cutting of a medium carbon steel. Int J Mach Tool Manu 46(5):467–481. doi: 10.1016/j.ijmachtools.2005.07.019 CrossRefGoogle Scholar
  100. 100.
    Shet C, Deng X (2000) Finite element analysis of the orthogonal metal cutting process. J Mater Process Tech 105(1–2):95–109. doi: 10.1016/s0924-0136(00)00595-1 CrossRefGoogle Scholar
  101. 101.
    Ceretti E, Lucchi M, Altan T (1999) FEM simulation of orthogonal cutting: serrated chip formation. J Mater Process Tech 95(1–3):17–26. doi: 10.1016/s0924-0136(99)00261-7 CrossRefGoogle Scholar
  102. 102.
    Hua J, Shivpuri R (2002) Influence of crack mechanics on the chip segmentation in the machining of Ti-6Al-4 V. In: Proceedings of the 9th ISPE international conference on concurrent engineering, Cranfield, UK, pp 357–365Google Scholar
  103. 103.
    Filice L, Micari F, Rizzuti S, Umbrello D (2007) A critical analysis on the friction modelling in orthogonal machining. Int J Mach Tool Manu 47(3–4):709–714. doi: 10.1016/j.ijmachtools.2006.05.007 CrossRefGoogle Scholar
  104. 104.
    Zhu Y, Kishawy HA (2005) Influence of alumina particles on the mechanics of machining metal matrix composites. Int J Mach Tool Manu 45(4–5):389–398. doi: 10.1016/j.ijmachtools.2004.09.013 CrossRefGoogle Scholar
  105. 105.
    Quan Y, Ye B (2003) The effect of machining on the surface properties of SiC/Al composites. J Mater Process Tech 138(1–3):464–467. doi: 10.1016/s0924-0136(03)00119-5 CrossRefGoogle Scholar
  106. 106.
    Reddy PR, Sriramakrishna AA (2002) Analysis of orthogonal cutting of aluminum-based composites. Defence Sci J 52(4):375–382Google Scholar
  107. 107.
    Chou YK, Liu J (2005) CVD diamond tool performance in metal matrix composite machining. Surf Coat Tech 200(5–6):1872–1878. doi: 10.1016/j.surfcoat.2005.08.094 CrossRefGoogle Scholar
  108. 108.
    Rintoul MD, Torquato S (1997) Reconstruction of the structure of dispersions. J Colloid Interf Sci 186(2):467–476. doi: 10.1006/jcis.1996.4675 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations