Morphable Models of Faces

  • Reinhard KnotheEmail author
  • Brian Amberg
  • Sami Romdhani
  • Volker Blanz
  • Thomas Vetter


In this chapter, we present the Morphable Model, a three-dimensional (3D) representation that enables the accurate modeling of any illumination and pose as well as the separation of these variations from the rest (identity and expression). The Morphable Model is a generative model consisting of a linear 3D shape and appearance model plus an imaging model, which maps the 3D surface onto an image. The 3D shape and appearance are modeled by taking linear combinations of a training set of example faces. We show that linear combinations yield a realistic face only if the set of example faces is in correspondence. A good generative model should accurately distinguish faces from non faces. This is encoded in the probability distribution over the model parameters, which assigns a high probability to faces and a low probability to non faces. The distribution is learned together with the shape and appearance space from the training data.


Face Recognition Input Image Face Image False Alarm Rate Face Recognition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: CVPR07, June 2007 Google Scholar
  2. 2.
    Amberg, B., Knothe, R., Vetter, T.: Expression invariant 3D face recognition with a morphable model. In: Automatic Face and Gesture Recognition (2008) Google Scholar
  3. 3.
    Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Pang, H.-C., Davis, J.: The correlated correspondence algorithm for unsupervised surface registration. In: NIPS (2004) Google Scholar
  4. 4.
    Beymer, D., Poggio, T.: Image representations for visual learning. Science 272, 1905–1909 (1996) CrossRefGoogle Scholar
  5. 5.
    Beymer, D., Shashua, A., Poggio, T.: Example based image analysis and synthesis. Technical report, Artificial Intelligence Laboratory, MIT, Cambridge, MA (1993) Google Scholar
  6. 6.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D-faces. In: SIGGRAPH 99 (1999) Google Scholar
  7. 7.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. PAMI (2003) Google Scholar
  8. 8.
    Blanz, V., Vetter, T.: Generating frontal views from single, non-frontal images. In: Face Recognition Vendor Test 2002: Technical Appendix O. NISTIR 6965. National Institute of Standards and Technology, Gaithersburg (2003) Google Scholar
  9. 9.
    Blanz, V., Romdhani, S., Vetter, T.: Face identification across different poses and illuminations with a 3D morphable model. In: Automatic Face and Gesture Recognition (2002) Google Scholar
  10. 10.
    Blanz, V., Basso, C., Poggio, T., Vetter, T.: Reanimating faces in images and video. In: EuroGraphics (2003) Google Scholar
  11. 11.
    Blanz, V., Scherbaum, K., Seidel, H.-P.: Fitting a morphable model to 3D scans of faces. In: Proc. of Int. Conf. on Computer Vision ICCV (2007) Google Scholar
  12. 12.
    Brand, M.: Morphable 3D models from video. In: CVPR (2001) Google Scholar
  13. 13.
    Breuer, P., Kim, K.I., Kienzle, W., Schölkopf, B., Blanz, V.: Automatic 3D face reconstruction from single images or video. In: Automatic Face and Gesture Recognition (2008) Google Scholar
  14. 14.
    Chang, K.I., Bowyer, K.W., Flynn, P.F.: An evaluation of multimodal 2D+3D face biometrics. In: PAMI (2005) Google Scholar
  15. 15.
    Craw, I., Cameron, P.: Parameterizing images for recognition and reconstruction. In: Proc. BMVC (1991) Google Scholar
  16. 16.
    Deckelnick, K., Dziuk, G., Elliott, C.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Dedner, A., Lüthi, M., Albrecht, T., Vetter, T.: Curvature guided level set registration using adaptive finite elements. In: DAGM (2007) Google Scholar
  18. 18.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2001) zbMATHGoogle Scholar
  20. 20.
    Edwards, G., Taylor, C., Cootes, T.: Interpreting face images using active appearance models. In: Automatic Face and Gesture Recognition (1998) Google Scholar
  21. 21.
    Foley, J., van Dam, A., Feiner, S., Hughes, J.: Computer Graphics: Principles and Practice. Addison-Wesley, Reading (1996) zbMATHGoogle Scholar
  22. 22.
    Gu, L., Kanade, T.: 3D alignment of face in a single image. In: CVPR (2006) Google Scholar
  23. 23.
    Hallinan, P.: A deformable model for the recognition of human faces under arbitrary illumination. Ph.D. thesis, Harvard University (1995) Google Scholar
  24. 24.
    Huang, J., Blanz, V., Heisele, B.: Face recognition with support vector machines and 3D head models. In: Pattern Recognition with Support Vector Machines, First International Workshop (2002) Google Scholar
  25. 25.
    Huang, X., Paragios, N., Metaxas, D.N.: Shape registration in implicit spaces using information theory and free form deformations. In: PAMI (2006) Google Scholar
  26. 26.
    Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses (2005) Google Scholar
  27. 27.
    Kumar, V., Poggio, T.: Learning-based approach to estimation of morphable model parameters. AI Memo No. 1696 (2000) Google Scholar
  28. 28.
    Lanitis, A., Taylor, C., Cootes, T.: An automatic face identification system using flexible appearance models. In: Proc. British Machine Vision Conference (1994) Google Scholar
  29. 29.
    Leopold, D.A., O’Toole, A.J., Vetter, T., Blanz, V.: Prototype-referenced shape encoding revealed by high-level aftereffects. Nat. Neurosci. (2001) Google Scholar
  30. 30.
    Litke, N., Droske, M., Rumpf, M., Schröder, P.: An image processing approach to surface matching. In: Symposium on Geometry Processing (2005) Google Scholar
  31. 31.
    Minka, T.: Old and new matrix algebra useful for statistics (2000).
  32. 32.
    Moreno, A.B., Sánchez, A.: GavabDB: a 3D face database. In: Workshop on Biometrics on the Internet (2004) Google Scholar
  33. 33.
    Murase, H., Nayar, S.: Visual learning and recognition of 3d objects from appearance. Int. J. Comput. Vis. 14, 5–24 (1995) CrossRefGoogle Scholar
  34. 34.
    Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: AVSS (2009) Google Scholar
  35. 35.
    Phillips, P., Grother, P., Michaels, R., Blackburn, D., Tabassi, E., Bone, M.: Face recognition vendor test 2002: evaluation report. In: NISTIR 6965. National Institute of Standards and Technology, Gaithersburg (2003) Google Scholar
  36. 36.
    Phillips, J.P., Scruggs, T.W., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.: FRVT 2006 and ICE 2006 large-scale results. In: NISTIR 7408 (2007) Google Scholar
  37. 37.
    Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992) Google Scholar
  38. 38.
    Romdhani, S.: Face image analysis using a multiple features fitting strategy. Ph.D. dissertation (2005) Google Scholar
  39. 39.
    Romdhani, S., Vetter, T.: Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. In: CVPR (2005) Google Scholar
  40. 40.
    Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4, 519–524 (1987) CrossRefGoogle Scholar
  41. 41.
    ter Haar, F.B., Veltkamp, R.C.: A 3D face matching framework. In: SMI (2008) Google Scholar
  42. 42.
    Tipping, M., Bishop, C.: Probabilistic principal component analysis. J. R. Stat. Soc., Ser. B (1999) Google Scholar
  43. 43.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991) CrossRefGoogle Scholar
  44. 44.
    Vapnik, V.: The Nature of Statistical Learning. Springer, New York (1995) zbMATHGoogle Scholar
  45. 45.
    Vetter, T., Troje, N.: Separation of texture and shape in images of faces for image coding and synthesis. J. Opt. Soc. Am. 14, 2152–2161 (1997) CrossRefGoogle Scholar
  46. 46.
    Vlasic, D., Brand, M., Pfister, H., Popović, J.: Face transfer with multilinear models. ACM Trans. Graph. (2005) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Reinhard Knothe
    • 1
    Email author
  • Brian Amberg
    • 1
  • Sami Romdhani
    • 1
  • Volker Blanz
    • 2
  • Thomas Vetter
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of BaselBaselSwitzerland
  2. 2.Universität SiegenSiegenGermany

Personalised recommendations