Advertisement

Evaluation Methods in Face Recognition

  • P. Jonathon PhillipsEmail author
  • Patrick Grother
  • Ross Micheals

Abstract

The heart of designing and conducting evaluations and is the experimental protocol. The protocol states how an evaluation is to be conducted and how the results are to be computed. In this chapter we concentrate on describing the FERET and FRVT 2002 protocols. The FRVT 2002 evaluation protocol is based in the FERET evaluation protocols. The FRVT 2002 protocol is designed for biometric evaluations in general, not just for evaluating face recognition algorithms. These two evaluation protocol served as a basis for the FRVT 2006 and MBE 2010 evaluations.

References

  1. 1.
    Beveridge, J.R., She, K., Draper, B.A., Givens, G.H.: A nonparametric statistical comparison of principal component and linear discriminant subspaces for face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 535–542 (2001) Google Scholar
  2. 2.
    Beveridge, J.R., Givens, G.H., Phillips, P.J., Draper, B.A., Lui, Y.M.: Focus on quality, predicting FRVT 2006 performance. In: Proceeding of the Eighth International Conference on Automatic Face and Gesture Recognition (2008) Google Scholar
  3. 3.
    Beveridge, J.R., Givens, G.H., Phillips, P.J., Draper, B.A.: Factors that influence algorithm performance in the Face Recognition Grand Challenge. Comput. Vis. Image Underst. 113, 750–762 (2009) CrossRefGoogle Scholar
  4. 4.
    Beveridge, J.R., Givens, G.H., Phillips, P.J., Draper, B.A., Bolme, D.S., Lui, Y.M.: FRVT 2006: Quo vadis face quality. Image Vis. Comput. 28(5), 732–743 (2010) CrossRefGoogle Scholar
  5. 5.
    Blackburn, D., Bone, M., Phillips, P.J.: Face recognition vendor test 2000. Technical report (2001). http://www.frvt.org
  6. 6.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proceedings, SIGGRAPH’99, pp. 187–194 (1999) Google Scholar
  7. 7.
    Okada, K., et al.: The Bochum/USC face recognition system. In: Wechsler, H., Phillips, P.J., Bruce, V., Fogelman Soulie, F., Huang, T.S. (eds.) Face Recognition: From Theory to Applications. Springer, Berlin (1998) Google Scholar
  8. 8.
    Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. J. Opt. Soc. Am. A 14, 1724–1733 (1997) CrossRefGoogle Scholar
  9. 9.
    Givens, G.H., Beveridge, J.R., Draper, B.A., Bolme, D.: A statistical assessment of subject factors in the pca recognition of human faces. In: CVPR 2003 Workshop on Statistical Analysis in Computer Vision Workshop (2003) Google Scholar
  10. 10.
    Grother, P.J., Quinn, G.W., Phillips, P.J.: MBE 2010: Report on the evaluation of 2D still-image face recognition algorithms. NISTIR 7709, National Institute of Standards and Technology (2010) Google Scholar
  11. 11.
    Micheals, R.J., Boult, T.: Efficient evaluation of classification and recognition systems. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 50–57 (2001) Google Scholar
  12. 12.
    Micheals, R.J., Grother, P., Phillips, P.J.: The NIST HumanID evaluation framework. In: Kittler, J., Nixon, M.S. (eds.) Third Inter. Conf. on Audio- and Video-Based Biometric Person Authentication. LNCS, vol. 2688, pp. 403–411. Springer, Berlin (2003) CrossRefGoogle Scholar
  13. 13.
    Moghaddam, B., Nastar, C., Pentland, A.: Bayesian face recognition using deformable intensity surfaces. In: Proceedings Computer Vision and Pattern Recognition 96, pp. 638–645 (1996) Google Scholar
  14. 14.
    Moon, H., Phillips, P.J.: Computational and performance aspects of PCA-based face-recognition algorithms. Perception 30, 303–321 (2001) CrossRefGoogle Scholar
  15. 15.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998) CrossRefGoogle Scholar
  16. 16.
    Phillips, P.J., Martin, A., Wilson, C.L., Przybocki, M.: An introduction to evaluating biometric systems. Computer 33, 56–63 (2000) CrossRefGoogle Scholar
  17. 17.
    Phillips, P.J., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000) CrossRefGoogle Scholar
  18. 18.
    Phillips, P., Grother, P., Micheals, R., Blackburn, D., Tabassi, E., Bone, J.: Face recognition vendor test 2002: Evaluation report. Technical Report NISTIR 6965, National Institute of Standards and Technology (2003). http://www.frvt.org
  19. 19.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 947–954 (2005) Google Scholar
  20. 20.
    Phillips, P.J., Flynn, P.J., Beveridge, J.R., Scruggs, W.T., O’Toole, A.J., Bolme, D., Bowyer, K.W., Draper, B.A., Givens, G.H., Lui, Y.M., Sahibzada, H., Scallan, J.A. III, Weimer, S.: Overview of the Multiple Biometrics Grand Challenge. In: Proceedings Third IAPR International Conference on Biometrics (2009) Google Scholar
  21. 21.
    Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.: FRVT 2006 and ICE 2006 large-scale results. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 831–846 (2010) CrossRefGoogle Scholar
  22. 22.
    Rizvi, S., Phillips, P.J., Moon, H.: A verification protocol and statistical performance analysis for face recognition algorithms. In: Computer Vision and Pattern Recognition 98, pp. 833–838 (1998) Google Scholar
  23. 23.
    Sarkar, S., Phillips, P.J., Liu, Z., Robledo, I., Grother, P., Bowyer, K.W.: The HumanID gait challenge problem: Data sets, performance, and analysis. Technical report (2003). http://www.gaitchallenge.org
  24. 24.
    Swets, D., Weng, J.: Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 831–836 (1996) CrossRefGoogle Scholar
  25. 25.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991) CrossRefGoogle Scholar
  26. 26.
    Wilder, J.: Face recognition using transform coding of gray scale projection projections and the neural tree network. In: Mammone, R.J. (ed.) Artificial Neural Networks with Applications in Speech and Vision, pp. 520–536. Chapman & Hall, London (1994) Google Scholar
  27. 27.
    Wiskott, L., Fellous, J.-M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 775–779 (1997) CrossRefGoogle Scholar
  28. 28.
    Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant analysis of principal components for face recognition. In: 3rd International Conference on Automatic Face and Gesture Recognition, pp. 336–341 (1998) CrossRefGoogle Scholar
  29. 29.
    Zhao, W., Krishnaswamy, A., Chellappa, R., Swets, D., Weng, J.: Discriminant analysis of principal components for face recognition. In: Wechsler, H., Phillips, P.J., Bruce, V., Fogelman Soulie, F., Huang, T.S. (eds.) Face Recognition: From Theory to Applications, pp. 73–85. Springer, Berlin, (1998) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • P. Jonathon Phillips
    • 1
    Email author
  • Patrick Grother
    • 1
  • Ross Micheals
    • 1
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations