Advertisement

Introduction

  • Stan Z. Li
  • Anil K. Jain

Abstract

This chapter provides an introduction to face recognition research. Main steps of face recognition processing are described. Face detection and recognition problems are explained from a face subspace viewpoint. Technology challenges are identified after that. Typical strategies for solving the problems are suggested.

Keywords

Face Recognition Linear Discriminant Analysis Face Image Local Binary Pattern Face Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Proceedings of the European Conference on Computer Vision, pp. 469–481. Prague, Czech Republic (2004) Google Scholar
  2. 2.
    Bartlett, M.S., Lades, H.M., Sejnowski, T.J.: Independent component representations for face recognition. In: Proceedings of the SPIE, Conference on Human Vision and Electronic Imaging III, vol. 3299, pp. 528–539 (1998) Google Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997) CrossRefGoogle Scholar
  4. 4.
    Bernardin, K., v. d. Camp, F., Stiefelhagen, R.: Automatic person detection and tracking using fuzzy controlled active cameras. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007) Google Scholar
  5. 5.
    Bichsel, M., Pentland, A.P.: Human face recognition and the face image set’s topology. CVGIP, Image Underst. 59, 254–261 (1994) CrossRefGoogle Scholar
  6. 6.
    Brunelli, R., Poggio, T.: Face recognition: Features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1042–1052 (1993) CrossRefGoogle Scholar
  7. 7.
    Cao, Z., Yin, Q., Tang, X., Sun, J.: Face recognition with learning-based descriptor. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010) Google Scholar
  8. 8.
    Chellappa, R., Wilson, C., Sirohey, S.: Human and machine recognition of faces: A survey. Proc. IEEE 83, 705–740 (1995) CrossRefGoogle Scholar
  9. 9.
    Cox, I.J., Ghosn, J., Yianilos, P.: Feature-based face recognition using mixture-distance. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 209–216 (1996) Google Scholar
  10. 10.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005) Google Scholar
  11. 11.
    Dedeoglu, G., Kanade, T., August, J.: High-zoom video hallucination by exploiting spatio-temporal regularities. In: Proceedings of IEEE International Conference on Computer Vision, pp. 151–158 (2004) Google Scholar
  12. 12.
    Etemad, K., Chellapa, R.: Face recognition using discriminant eigenvectors. In: Proceedings of the International Conference on Acoustic, Speech and Signal Processing (1996) Google Scholar
  13. 13.
    Goldstein, A.J., Harmon, L.D., Lesk, A.B.: Identification of human faces. Proc. IEEE 59(5), 748–760 (1971) CrossRefGoogle Scholar
  14. 14.
    Hampapur, A., Pankanti, S., Senior, A., Tian, Y.-L., Brown, L., Bolle, R.: Face cataloger: multi-scale imaging for relating identity to location. In: Proc. IEEE Conference Advanced Video and Signal Based Surveillance, pp. 13–20 (2003) CrossRefGoogle Scholar
  15. 15.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005) CrossRefGoogle Scholar
  16. 16.
    Hietmeyer, R.: Biometric identification promises fast and secure processing of airline passengers. ICAO J. 55(9), 10–11 (2000) Google Scholar
  17. 17.
    Hsu, R.-L.: Face detection and modeling for recognition. PhD thesis, Michigan State University (2002) Google Scholar
  18. 18.
    Kanade, T.: Picture processing system by computer complex and recognition of human faces. PhD thesis, Kyoto University (1973) Google Scholar
  19. 19.
    Kirby, M., Sirovich, L.: Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 103–108 (1990) CrossRefGoogle Scholar
  20. 20.
    Kumar, R., Banerjee, A., Vemuri, B.: Volterrafaces: discriminant analysis using Volterra kernels. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 150–155 (2009) Google Scholar
  21. 21.
    Lades, M., Vorbruggen, J., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42, 300–311 (1993) CrossRefGoogle Scholar
  22. 22.
    Lei, Z., Liao, S., Pietikäinen, M., Li, S.Z.: Face recognition by exploring information jointly in space, scale and orientation. IEEE Trans. Image Process. 20(1), 247–256 (2011) CrossRefGoogle Scholar
  23. 23.
    Liao, S., Lei, Z., Zhu, X., Sun, Z., Li, S.Z., Tan, T.: Face recognition using ordinal features. In: Proceedings of IAPR International Conference on Biometrics, pp. 40–46 (2006) Google Scholar
  24. 24.
    Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Proceedings of IAPR International Conference on Biometrics, pp. 828–837 (2007) Google Scholar
  25. 25.
    Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 725–737 (2006) CrossRefGoogle Scholar
  26. 26.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of IEEE International Conference on Computer Vision, p. 1150, Los Alamitos, CA (1999) CrossRefGoogle Scholar
  27. 27.
    Machine Readable Travel Documents (MRTD). http://www.icao.int/mrtd/overview/overview.cfm
  28. 28.
    Marchesotti, L., Piva, S., Turolla, A., Minetti, D., Regazzoni, C.: Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions. In: Proceedings of SPIE Int’l Conf. Image and Video Communications and Processing (2005) Google Scholar
  29. 29.
    Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Muller, K.-R.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX, pp. 41–48 (1999) Google Scholar
  30. 30.
    Moses, Y., Adini, Y., Ullman, S.: Face recognition: The problem of compensating for changes in illumination direction. In: Proceedings of the European Conference on Computer Vision, vol. A, pp. 286–296 (1994) Google Scholar
  31. 31.
    NIST: Face Recognition Vendor Tests (FRVT) (2006). http://www.frvt.org
  32. 32.
    Park, J., Lee, S.: Stepwise reconstruction of high-resolution facial image based on interpolated morphable face model. In: Proc. Int’l Conf. Audio-and Video-based Biometric Person Authentication, pp. 102–111 (2005) CrossRefGoogle Scholar
  33. 33.
    Penev, P., Atick, J.: Local feature analysis: A general statistical theory for object representation. Neural Syst. 7(3), 477–500 (1996) MATHCrossRefGoogle Scholar
  34. 34.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000) CrossRefGoogle Scholar
  35. 35.
    Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000) CrossRefGoogle Scholar
  36. 36.
    Samal, A., Iyengar, P.A.: Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern Recognit. 25, 65–77 (1992) CrossRefGoogle Scholar
  37. 37.
    Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1999) CrossRefGoogle Scholar
  38. 38.
    Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4(3), 519–524 (1987) CrossRefGoogle Scholar
  39. 39.
    Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(22), 2319–2323 (2000) CrossRefGoogle Scholar
  40. 40.
    Tistarelli, M., Li, S., Chellappa, R. (eds.): Handbook of Remote Biometrics for Surveillance and Security. Springer, Berlin (2009) Google Scholar
  41. 41.
    Turk, M.: A random walk through eigenspace. IEICE Trans. Inf. Syst. E84-D(12), 1586–1695 (2001) Google Scholar
  42. 42.
    Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991) CrossRefGoogle Scholar
  43. 43.
    Valentin, D., Abdi, H., O’Toole, A.J., Cottrell, G.W.: Connectionist models of face processing: A survey. Pattern Recognit. 27(9), 1209–1230 (1994) CrossRefGoogle Scholar
  44. 44.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p. 511 (2001) Google Scholar
  45. 45.
    Wiskott, L., Fellous, J., Kruger, N., v. d. Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997) CrossRefGoogle Scholar
  46. 46.
    Yang, P., Shan, S., Gao, W., Li, S.Z., Zhang, D.: Face recognition using Ada-boosted Gabor features. In: Proceedings of International Conference on Automatic Face and Gesture Recognition, pp. 356–361 (2004) CrossRefGoogle Scholar
  47. 47.
    Yao, Y., Abidi, B., Kalka, N., Schmid, N., Abidi, M.: Improving long range and high magnification face recognition: Database acquisition, evaluation, and enhancement. Comput. Vis. Image Underst. 111(2), 111–125 (2008) CrossRefGoogle Scholar
  48. 48.
    Zhang, L., Li, S.Z., Qu, Z., Huang, X.: Boosting local feature based classifiers for face recognition. In: Proceedings of First IEEE Workshop on Face Processing in Video, Washington, DC (2004) Google Scholar
  49. 49.
    Zhang, G., Huang, X., Li, S.Z., Wang, Y., Wu, X.: Boosting local binary pattern (LBP)-based face recognition. In: Li, S.Z., Lai, J., Tan, T., Feng, G., Wang, Y. (eds.) Advances in Biometric Personal Authentication, vol. 3338, pp. 180–187. Springer, Berlin (2005) Google Scholar
  50. 50.
    Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A.: Face recognition: A literature survey. ACM Comput. Surv. 399–458 (2003) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.Michigan State UniversityEast LansingUSA

Personalised recommendations