Skip to main content

Metabolic Crises

  • Chapter
  • First Online:
Pediatric Critical Care Study Guide
  • 3790 Accesses

Abstract

The diagnosis and management of the acutely ill child with suspected metabolic disease can present a formidable challenge to even the most astute clinician. Metabolic disease may present in a fulminate fashion to the pediatric intensivist with profound biochemical disturbances, encephalopathy and even cardiac failure. The diagnosis of an inborn error of metabolism (IEM) may be delayed if a high index of suspicion is not maintained when an infant presents with critical illness. This chapter serves as a guide to the recognition of metabolic disease based on presenting signs, symptoms and screening laboratory tests. The rapid implementation of therapy for children with suspected or known metabolic disease will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Suggested Readings

  • Arad M, Maron BJ, Gorham JM, Johnson WH, Saul JP, Perez-Atayde AR. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005;352:362–72.

    Article  PubMed  CAS  Google Scholar 

  • Arid M, Benson DW, Perez-Atayde AR, et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest. 2002;109:357–62.

    Google Scholar 

  • Bachrach BE, Weinstein DA, Orho-Melander M, Burgess A, Wolfsdorf JI. Glycogen synthase deficiency (Glycogen storage disease type 0) presenting with hyperglycemia and glucosuria: report of three new mutations. J Pediatr. 2002;140:781–3.

    Article  PubMed  CAS  Google Scholar 

  • Beale EG, Hammer RE, Antoine B, Forest C. Glyceroneogenesis comes of age. FASEB J. 2002;16:1695–6.

    Article  PubMed  CAS  Google Scholar 

  • Bodamer O. Organic acidemias. In: Rose BD, editor. UpToDate. Waltham: UpToDate; 2006.

    Google Scholar 

  • Burton BK. Inborn errors of metabolism in infancy: a guide to diagnosis. Pediatrics. 1998;102:1–9.

    Article  Google Scholar 

  • Chitkara DK, Nurko S, Shoffner JM, Buie T, Flores A. Abnormalities in gastrointestinal motility are associated with diseases of oxidative phosphorylation in children. Am J Gastroenterol. 2003;98:871–7.

    Article  PubMed  CAS  Google Scholar 

  • Chuang DT. Maple syrup urine disease: it has come a long way. J Pediatr. 1998;132:S17–23.

    Article  PubMed  CAS  Google Scholar 

  • Craigen WJ, Darras BT. Overview of disorders of glycogen metabolism. In: Rose BD, editor. UpToDate. Waltham: UpToDate; 2006.

    Google Scholar 

  • Crone J, Möslinger D, Bodamer OA, et al. Reversibility of cirrhotic regenerative liver nodules upon NTBC treatment in a child with tyrosinemia type I. Acta Paediatr. 2003;92:625–8.

    Article  PubMed  CAS  Google Scholar 

  • Foster JD, Nordlie RC. The biochemistry and molecular biology of the glucose-6-phosphat system. Exp Biol Med. 2002;227:601–8.

    CAS  Google Scholar 

  • Freeze HH. Congenital disorders of glycosylation: CDG-I, CDG-II, and beyond. Curr Mol Med. 2007;7:389–96.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cazorla A, Rabier D, Touati G, et al. Pyrivate carboxylase deficiency: metabolic characteristics and new neurological aspects. Ann Neurol. 2006;59:121–7.

    Article  PubMed  Google Scholar 

  • Gordon N. Classic diseases revisited: carbohydrate-deficient glycoprotein syndromes. Postgrad Med J. 2000;76:145–9.

    Article  PubMed  CAS  Google Scholar 

  • Hartley LM, Khwaja OS, Verity CM. Glutaric aciduria type I and nonaccidental head injury. Pediatrics. 2001;107:174–6.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GF, Nyhan WL, Zschocke J, Kahler SG, Mayatepek E. Inhereted metabolic diseases. Philadelphia: Lippincott Williams and Wilkins; 2002.

    Google Scholar 

  • Kelly A, Stanley CA. Disorders of glutamate metabolism. Ment Retard Dev Disabil Res Rev. 2001;7:287–95.

    Article  PubMed  CAS  Google Scholar 

  • Mancuso M, Massimiliano F, Tsujino S, et al. Muscle glycogenosis and mitochondrial hepatopathy in an infant with mutations in both the myophosphorylase and deoxyguanosine kinase genes. Arch Neurol. 2003;60:1445–7.

    Article  PubMed  Google Scholar 

  • Mochel F, DeLonlay P, Touati G, et al. Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab. 2005;84:305–12.

    Article  PubMed  CAS  Google Scholar 

  • Morris AAM, Leonard JV. Early recognition of metabolic decompensation. Arch Dis Child. 1997;76:555–6.

    Article  PubMed  CAS  Google Scholar 

  • Niezen-Koning KE, Wanders RJ, Ruiter JP, et al. Succinyl-CoA: acetoacetate transferase deficiency: identification of a new patient with a neonatal onset and review of the literature. Eur J Pediatr. 1997;156:870–3.

    Article  PubMed  CAS  Google Scholar 

  • Roe CR, Sweetman L, Roe DS, David F, Brunengraber H. Treatment of cardiomyopathy and rhabdomyolisis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest. 2002;110:259–69.

    PubMed  CAS  Google Scholar 

  • Rutledge SL, Atchison J, Boshard NU, Steinmann B. Case report: liver glycogen synthase deficiency – a cause for ketotis hypoglycemia. Pediatrics. 2001;108:495–7.

    Article  PubMed  CAS  Google Scholar 

  • Saudubray JM, Specola JM, Middleton N, et al. Hyperketotic states due to inherited defects of ketolysis. Enzyme. 1987;38:80–90.

    PubMed  CAS  Google Scholar 

  • Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw Hill; 2001.

    Google Scholar 

  • Strauss KA. Glutaric aciduria type I: a clinicians view of progress. Brain. 2005;128:697–9.

    Article  PubMed  Google Scholar 

  • van den Berghe G. Disorders of gluconeogenesis. J Inherit Metab Dis. 1996;19:470–7.

    Article  PubMed  Google Scholar 

  • Vockley J, Whiteman DAH. Defects of mitochondrial β-oxidation: a growing group of disorders. Neuromuscul Dis. 2002;12:235–46.

    Article  Google Scholar 

  • Winter SC, Buist NRM. Cardiomyopathy in childhood, mitochondrial dysfunction, and the role of L-carnitine. Am Heart J. 2000;139:S63–9.

    Article  PubMed  CAS  Google Scholar 

  • Zeviani M, Di Donato S. Mitochondrial disorders. Brain. 2004;127:2153–72.

    Article  PubMed  Google Scholar 

  • Zschocke J, Elfriede Q, Guldberg P, Hoffman GF. Mutation analysis in glutaric aciduria type I. J Med Genet. 2000;37:177–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Bellino M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bellino, P.J. (2012). Metabolic Crises. In: Lucking, S., Maffei, F., Tamburro, R., Thomas, N. (eds) Pediatric Critical Care Study Guide. Springer, London. https://doi.org/10.1007/978-0-85729-923-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-923-9_40

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-922-2

  • Online ISBN: 978-0-85729-923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics