Skip to main content

Regional Circulations

  • Chapter
  • First Online:
Pediatric Critical Care Study Guide

Abstract

The major role of the circulatory system is to supply vital organs and all the tissue beds with oxygen and nutrients. The uninterrupted flow of oxygen and nutrients is necessary to sustain viability and guarantee normal function of the many specialized tissues. Since energy is needed for any function in the human body and it can be provided only by nutrients and oxygen, it is only logical that through the billions of years of evolution all the tissues have developed regulatory mechanisms that couple their function and energy consumption with the circulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

SUGGESTED READINGS

  • Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Belardinelli L, Linden J, Berne RM. The cardiac effects of adenosine. Prog Cardiovasc Dis. 1989;32:73–97.

    Article  PubMed  CAS  Google Scholar 

  • Cheng HF, Harris RC. Cyclooxygenases, the kidney, and hypertension. Hypertension. 2004;43:525–30.

    Article  PubMed  CAS  Google Scholar 

  • Chilian WM. Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation. 1997;95:522–8.

    PubMed  CAS  Google Scholar 

  • Cowley Jr AW, Mori T, Mattson D, Zou A-P. Role of renal NO production in the regulation of medullary blood flow. Am J Physiol. 2003;284:R1355–69.

    CAS  Google Scholar 

  • Dickhout JG, Mori T, Cowley Jr AW. Tubulovascular nitric oxide crosstalk: buffering of angiotensin II-induced vasoconstriction. Circ Res. 2002;91:487–93.

    Article  PubMed  CAS  Google Scholar 

  • Duffy SJ, Castle SF, Harper RW, Meredith IT. Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilation, and flow-mediated dilation in human coronary circulation. Circulation. 1999;100:1951–7.

    PubMed  CAS  Google Scholar 

  • Faraci FM, Brian JE. Nitric oxide and the cerebral circulation. Stroke. 1994;25:692–703.

    Article  PubMed  CAS  Google Scholar 

  • Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78:53–97.

    PubMed  CAS  Google Scholar 

  • Frank M, Faraci F, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78:53–97.

    Google Scholar 

  • Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100:328–35.

    Article  PubMed  CAS  Google Scholar 

  • Gould KL. Coronary arterty stenosis. New York: Elsevier; 1991. p. 8.

    Google Scholar 

  • Hinshaw LB. Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med. 1996;24:1072.

    Article  PubMed  CAS  Google Scholar 

  • Hong MF, Dorian P. Update on advanced life support and resuscitation techniques. Curr Opin Cardiol. 2005;20:1–6.

    PubMed  Google Scholar 

  • Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004;43(12 Supple S):13S–24. Review.

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5:347–60.

    Article  PubMed  CAS  Google Scholar 

  • John M. Johnson, Duane W. Proppe. Cardiovascular Adjustments to Heat Stress. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 215–243. First published in print 1996. doi: 10.1002/cphy.cp040111.

    Google Scholar 

  • Kazmaier S, Weyland A, Buhre W, et al. Effects of respiratory alkalosis and acidosis on myocardial blood flow and metabolism in patients with coronary artery disease. Anesthesiology. 1998;89:831–7.

    Article  PubMed  CAS  Google Scholar 

  • Kellogg Jr DL. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol. 2005;100:1709–18.

    Article  Google Scholar 

  • Michelakis ED, Thebaud B, Weir KE, Archer SL. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol. 2004;37(6):1119–36.

    PubMed  CAS  Google Scholar 

  • Morita K, Mori H, Tsujioka K, et al. Adrenergic vasoconstriction reduces systolic retrograde coronary blood flow. Am J Physiol Heart Circ Physiol. 1997;273:H2746–55.

    CAS  Google Scholar 

  • Nieuwenhuijzen GA, Deitch EA, Goris RJ. Infection, the gut and the development of the multiple organ dysfunction syndrome. Eur J Surg. 1996;162:259–73.

    PubMed  CAS  Google Scholar 

  • Pallone TL, Robertson CR, Jamison RL. Renal medullary microcirculation. Physiol Rev. 1990;70:885–920.

    PubMed  CAS  Google Scholar 

  • Pallone TL, Zhang Z, Rhinehart K. Physiology of the renal medullary microcirculation. Am J Physiol Renal Physiol. 2003;284:F253–66. doi:10.1152/ajprenal.00304.2002.

    PubMed  CAS  Google Scholar 

  • Peters AP, Webster HD. The fine structure of the nervous system. New York: Oxford University Press; 1991.

    Google Scholar 

  • Rang HP, Dale MM, Ritter JM, Flower RJ (2007). “Chapter 11: Noradrenergic transmission”. Rang and Dale’s Pharmacology (6th ed.). Elsevier Churchill Livingstone. pp. 169–170. ISBN 0–443-06911–5.

    Google Scholar 

  • Stenmark KR, Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol. 1997;59:89–144.

    Article  PubMed  CAS  Google Scholar 

  • Voelkel NF, Tuder RM. Cellular and molecular of vascular smooth muscle cells in pulmonary hypertension. Pulm Pharmacol Ther. 1997;10:231–41.

    Article  PubMed  CAS  Google Scholar 

  • Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL. Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353:2042–55.

    Article  PubMed  CAS  Google Scholar 

  • Yada T, Richmond KN, Van Bibber R, et al. Role of adenosine in local metabolic coronary vasodilation. Am J Physiol. 1999;276:H1425–33.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetris Yannopoulos M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Yannopoulos, D., Nadkarni, V.M. (2012). Regional Circulations. In: Lucking, S., Maffei, F., Tamburro, R., Thomas, N. (eds) Pediatric Critical Care Study Guide. Springer, London. https://doi.org/10.1007/978-0-85729-923-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-923-9_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-922-2

  • Online ISBN: 978-0-85729-923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics