Fluid/Electrolyte/Acid–Base Abnormalities

  • Michael L. Moritz


Volume depletion commonly referred to as dehydration, will occur whenever water and salt losses exceed intake. If oral intake remains adequate, dehydration is usually avoided. Infants are especially prone to dehydration because they have higher proportional body fluid turnover than older children or adults. If an infant develops anorexia or vomiting, dehydration will develop sooner than in the older child because of the higher proportion of obligatory losses. Diarrhea in conjunction with vomiting is the most common cause of dehydration in children. Dehydration can also occur from increase sweating produced by fever, acute infections which decrease oral intake such as pneumonia or meningitis, or conditions that cause increased renal losses of salt and water such as pyelonephritis or excess diuretic use.


Serum Sodium Metabolic Alkalosis Volume Depletion Critical Care Setting Hypotonic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Suggested Readings


  1. American Academy of Pediatrics, Provisional Committee on Quality Improvement, Subcommittee on Acute Gastroenteritis. Practice parameter: the management of acute gastroenteritis in young children..Pediatrics. 1996;97(3):424–35.Google Scholar
  2. Armon K, Stephenson T, MacFaul R, Eccleston P, Werneke U. An evidence and consensus based guideline for acute diarrhoea management. Arch Dis Child. 2001;85(2):132–42.PubMedCrossRefGoogle Scholar
  3. Reid SR, Bonadio WA. Outpatient rapid intravenous rehydration to correct dehydration and resolve vomiting in children with acute gastroenteritis. Ann Emerg Med. 1996;28(3):318–23.PubMedCrossRefGoogle Scholar
  4. Steiner MJ, DeWalt DA, Byerley JS. Is this child dehydrated? JAMA. 2004;291(22):2746–54.PubMedCrossRefGoogle Scholar


  1. Ayus JC, Arieff AI. Pathogenesis and prevention of hyponatremic encephalopathy. Endocrinol Metab Clin North Am. 1993;22(2): 425–46.PubMedGoogle Scholar
  2. Moritz ML, Ayus JC. Disorders of water metabolism in children: hyponatremia and hypernatremia. Pediatr Rev. 2002;23(11): 371–80.PubMedGoogle Scholar
  3. Moritz ML, Ayus JC. The pathophysiology and treatment of hyponatraemic encephalopathy: an update. Nephrol Dial Transplant. 2003a;18(12):2486–91.PubMedCrossRefGoogle Scholar
  4. Moritz ML, Ayus JC. Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics. 2003b;111(2):227–30.PubMedCrossRefGoogle Scholar
  5. Moritz ML, Ayus JC. Dysnatremias in the critical care setting. Contrib Nephrol. 2004;144:132–57.PubMedCrossRefGoogle Scholar


  1. Bushinsky DA, Monk RD. Electrolyte quintet: calcium. Lancet. 1998;352(9124):306–11.PubMedCrossRefGoogle Scholar
  2. Cardenas-Rivero N, Chernow B, Stoiko MA, Nussbaum SR, Todres ID. Hypocalcemia in critically ill children. J Pediatr. 1989;114(6):946–51.PubMedCrossRefGoogle Scholar
  3. Carlstedt F, Lind L. Hypocalcemic syndromes. Crit Care Clin. 2001;17(1):vii–viii.CrossRefGoogle Scholar
  4. Hsu SC, Levine MA. Perinatal calcium metabolism: physiology and pathophysiology. Semin Neonatol. 2004;9(1):23–6.PubMedCrossRefGoogle Scholar
  5. Singh J, Moghal N, Pearce SH, Cheetham T. The investigation of hypocalcaemia and rickets. Arch Dis Child. 2003;88(5):403–7.PubMedCrossRefGoogle Scholar
  6. Umpaichitra V, Bastian W, Castells S. Hypocalcemia in children: pathogenesis and management. Clin Pediatr (Phila). 2001;40(6): 305–12.CrossRefGoogle Scholar


  1. Gennari FJ. Hypokalemia. N Engl J Med. 1998;339(7):451–8.PubMedCrossRefGoogle Scholar
  2. Gennari FJ. Disorders of potassium homeostasis. Hypokalemia and hyperkalemia. Crit Care Clin. 2002;18(2):273–88.PubMedCrossRefGoogle Scholar
  3. Greger R. Why do loop diuretics cause hypokalaemia? Nephrol Dial Transplant. 1997;12(9):1799–801.PubMedCrossRefGoogle Scholar
  4. Mattu A, Brady WJ, Robinson DA. Electrocardiographic manifestations of hyperkalemia. Am J Emerg Med. 2000;18(6):721–9.PubMedCrossRefGoogle Scholar

Magnesium and Phosphorous

  1. Agus ZS. Hypomagnesemia. J Am Soc Nephrol. 1999;10(7): 1616–22.PubMedGoogle Scholar
  2. Soliman HM, Mercan D, Lobo SS, Melot C, Vincent JL. Development of ionized hypomagnesemia is associated with higher mortality rates. Crit Care Med. 2003;31(4):1082–7.PubMedCrossRefGoogle Scholar
  3. Sutters M, Gaboury CL, Bennett WM. Severe hyperphosphatemia and hypocalcemia: a dilemma in patient management. J Am Soc Nephrol. 1996;7(10):2056–61.PubMedGoogle Scholar
  4. Weisinger JR, Bellorin-Font E. Magnesium and phosphorus. Lancet. 1998;352(9125):391–6.PubMedCrossRefGoogle Scholar


  1. Adrogue HJ, Madias NE. Management of life-threatening acid-base disorders. First of two parts. N Engl J Med. 1998a;338(1): 26–34.PubMedCrossRefGoogle Scholar
  2. Adrogue HJ, Madias NE. Management of life-threatening acid-base disorders. Second of two parts. N Engl J Med. 1998b;338(2): 107–11.PubMedCrossRefGoogle Scholar
  3. Galla JH. Metabolic alkalosis. J Am Soc Nephrol. 2000;11(2): 369–75.PubMedGoogle Scholar
  4. Gluck SL. Acid-base. Lancet. 1998;352(9126):474–9.PubMedCrossRefGoogle Scholar
  5. Kraut JA, Kurtz I. Use of base in the treatment of severe acidemic states. Am J Kidney Dis. 2001;38(4):703–27.PubMedCrossRefGoogle Scholar
  6. Palmer BF, Alpern RJ. Metabolic alkalosis. J Am Soc Nephrol. 1997;8(9):1462–9.PubMedGoogle Scholar
  7. Rodriguez Soriano J. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol. 2002;13(8):2160–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Pediatric Nephrology, Department of PediatricsUniversity of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of UPMCPittsburghUSA

Personalised recommendations