Cardiovascular Drug Therapy

  • Frank A. Maffei


Cardiovascular agents are utilized when myocardial and/or circulatory dysfunction persists despite optimization of volume status. They have potent activity on the biochemical and neurochemical pathways that maintain and regulate vascular tone. Although these drugs may have multiple dose dependent effects, they are often categorized by their primary cardiovascular activity. Terms used to describe the primary cardiovascular effect of these drugs include: Inotrope: Improves myocardial contractility and stroke volume Pressor: Increases systemic vascular resistance and blood pressure Chronotrope: Increases heart rate Lusitrope: Improves diastolic relaxation and decreases end diastolic pressure Vasodilator: Decreases systemic vascular resistance and afterload Inodilator: Improves myocardial contractility while decreasing afterload


Adenylate Cyclase Systemic Vascular Resistance Adrenal Medulla Myocardial Oxygen Consumption Hypertensive Emergency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Suggested Readings

  1. Ahlquist RP. A study of adrenotropic receptors. Am J Physiol. 1948;153:586.PubMedGoogle Scholar
  2. Brierley J, Carcillo JA, Choong K, Cornell T, Decaen A, Deymann A, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–88.PubMedCrossRefGoogle Scholar
  3. Calzada BS, DeArtinano AD. Alpha-adrenoceptor subtypes. Pharmacol Res. 2001;44:195–208.CrossRefGoogle Scholar
  4. Ceneviva G, Paschall AJ, Maffei FA, Carcillo JA. Hemodynamic support in fluid refractory pediatric septic shock. Pediatrics. 1998;102:1–6.CrossRefGoogle Scholar
  5. Choong K, Bohn D, Fraser D, et al. Vasopressin in pediatric vasodilatory shock: a multicenter randomized controlled trial. Am J Respir Crit Care Med. 2009;180:632–9.PubMedCrossRefGoogle Scholar
  6. Decaux G, Soupart A, Vassart G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet. 2008;371:1624–32.PubMedCrossRefGoogle Scholar
  7. Goldstein DS. Catecholamine receptors and signal transduction. Overview. Adv Pharmacol. 1998;42:379–90.PubMedCrossRefGoogle Scholar
  8. Hollenberg SM. Inotropes and vasopressor therapy of septic shock. Crit Care Clin. 2009;25:781–802.PubMedCrossRefGoogle Scholar
  9. Holmes CL. Vasoactive drugs in the intensive care unit. Curr Opin Crit Care. 2005;11:413–7.PubMedCrossRefGoogle Scholar
  10. Holmes CL, Patel BM, Russel JA, Walley KR. Physiology of vasopressin relevant to management of septic shock. Chest. 2001;120:989–1002.PubMedCrossRefGoogle Scholar
  11. Ichai C, Sanbielle J, Carles M, et al. Comparison of the renal effects of low to high doses of dopamine and dobutamine in critically ill patients. Crit Care Med. 2000;28:921–8.PubMedCrossRefGoogle Scholar
  12. Landry DW, Oliver JA. Mechanisms of disease: the pathogenesis of vasodilatory shock. N Engl J Med. 2001;345:588–95.PubMedCrossRefGoogle Scholar
  13. Marik P. Low dose dopamine: a systematic review. Intensive Care Med. 2002;28:877–83.PubMedCrossRefGoogle Scholar
  14. Martin C, Viviand X, Arnaud S, et al. Effects of norepinephrine plus dobutamine or norepinephrine alone on left ventricular performance of septic shock patients. Crit Care Med. 1999;27:2022–3.CrossRefGoogle Scholar
  15. Martin C, Viviand X, Leone M, Thirion X. Effect of norepinephrine on the outcome of septic shock. Crit Care Med. 2000;28:2758–65.PubMedCrossRefGoogle Scholar
  16. Miller RD. Anesthesia. 5th ed. Philadelphia: Churchill Livingstone; 2000.Google Scholar
  17. Milligan DJ, Fields AM. Levosimendan: calcium sensitizer and inodilator. Anesthesiol Clin. 2010;28:753–60.PubMedCrossRefGoogle Scholar
  18. Notterman DA, Greenwald BM, Moran F, Dimaio-Hunter D, et al. Dopamine clearance in critically ill infants and children: effect of age and organ system dysfunction. Clin Pharmacol Ther. 1990;48:138–47.PubMedCrossRefGoogle Scholar
  19. Patel HP, Mitsnefes M. Advances in the pathogenesis and management of hypertensive crisis. Curr Opin Pediatr. 2005;17:210–4.PubMedCrossRefGoogle Scholar
  20. Prins I, Plotz F, Uiterwaal C, van Vught HJ. Low dose dopamine in neonatal and pediatric intensive care: a systematic review. Intensive Care Med. 2001;27:206–10.PubMedCrossRefGoogle Scholar
  21. Sagi SV, Mittal S, Kasturi KS, et al. Terlipressin therapy for reversal of type 1 hepatorenal syndrome: a meta-analysis of randomized controlled trials. J Gastroenterol Hepatol. 2010;25(5):880–5.PubMedCrossRefGoogle Scholar
  22. Tsuneyosh I, Yamada H, Kakihana Y, et al. Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit Care Med. 2001;8:487–93.CrossRefGoogle Scholar
  23. Varon J, Marik PE. Clinical review: the management of hypertensive crises. Crit Care. 2003;7:374–84.PubMedCrossRefGoogle Scholar
  24. Vidt DG. Hypertensive crises: emergencies and urgencies. J Clin Hypertens. 2004;6:520–5.CrossRefGoogle Scholar
  25. Wessel DL. Managing low cardiac output syndrome after congenital heart surgery. Pediatr Crit Care Med. 2001;2:S52–62.Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Pediatric Critical Care Medicine, Department of Pediatrics, Geisinger Medical CenterTemple University School of Medicine, Janet Weis Children’s HospitalDanvilleUSA

Personalised recommendations