Lymphatic Vessels in Health and Disease

  • Elisabetta Weber
  • Francesca Sozio
  • Erica Gabbrielli
  • Antonella Rossi


The difficulty to recognize lymphatic vessels in common histological sections, particularly when they are collapsed, as they very often do, has long hampered research on lymphatics in spite of their universally accepted importance in tissue homeostasis, inflammation, immunity, and tumor spreading. The only positive identification criteria were the ultrastructural detection of a discontinuous basement membrane and anchoring filaments. Two recent discoveries have dramatically changed the interest of the scientific community in this long neglected field: the discovery of lymphatic-specific growth factors (vascular endothelial growth factor C and D) and the discovery of lymphatic markers (vascular endothelial growth factor receptor 3, Lyve-1, Prox1, and podoplanin). The role of lymphatics in several pathological conditions has so been elucidated, opening the possibility of new therapeutic strategies.


Sentinel Lymph Node Hepatocyte Growth Factor Focal Adhesion Kinase Lymphatic Vessel Lymphatic Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank D.J. Abraham, C.P. Denton, K. Khan (UCL Medical School, London), E.A. Renzoni (Royal Brompton Hospital, London), and P. Sestini (University of Siena) for their collaboration in the study of lymphatic vessels in scleroderma skin.


  1. 1.
    Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995;92:3566–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. Embo J. 1996;15:290–8.PubMedGoogle Scholar
  3. 3.
    Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997;276:1423–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Irrthum A, Karkkainen MJ, Devriendt K, et al. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. 2000;67:295–301.PubMedCrossRefGoogle Scholar
  5. 5.
    Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 2000;25:153–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Sleeman JP, Krishnan J, Kirkin V, et al. Markers for the lymphatic endothelium: in search of the holy grail? Microsc Res Tech. 2001;55:61–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98:769–78.PubMedCrossRefGoogle Scholar
  8. 8.
    Hong YK, Harvey N, Noh YH, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn. 2002;225:351–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 1999;144:789–801.PubMedCrossRefGoogle Scholar
  10. 10.
    Kahn HJ, Marks A. A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab Invest. 2002;82:1255–7.PubMedGoogle Scholar
  11. 11.
    Schacht V, Dadras SS, Johnson LA, et al. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 2005;166:913–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Schacht V, Ramirez MI, Hong YK, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. Embo J. 2003;22:3546–56.PubMedCrossRefGoogle Scholar
  13. 13.
    Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat. 1902;1:367–91.CrossRefGoogle Scholar
  14. 14.
    Detmar M, Hirakawa S. The formation of lymphatic vessels and its importance in the setting of malignancy. J Exp Med. 2002;196:713–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature. 2005;438:946–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Petrova TV, Karpanen T, Norrmén C, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med. 2004;10:974–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldman J, Rutkowski JM, Shields JD, et al. Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. Faseb J. 2007;21:1003–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Kajiya K, Hirakawa S, Ma B, et al. Hepatocyte growth factor promotes lymphatic vessel formation and function. Embo J. 2005;24:2885–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Maruyama K, Ii M, Cursiefen C, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest. 2005;115:2363–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Hirakawa S, Kodama S, Kunstfeld R, et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 2005;201:1089–99.PubMedCrossRefGoogle Scholar
  21. 21.
    Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Sacchi G, Weber E, Aglianò M, et al. The structure of superficial lymphatics in the human thigh: precollectors. Anat Rec. 1997;247:53–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Sacchi G, Weber E, Aglianò M, et al. Lymphatic vessels of the human heart: precollectors and collecting vessels. A morpho-structural study. J Submicrosc Cytol Pathol. 1999;31:515–25.PubMedGoogle Scholar
  24. 24.
    Leak LV, Burke JF. Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat. 1966;118:785–809.PubMedCrossRefGoogle Scholar
  25. 25.
    Casley Smith JR. Are the initial lymphatics normally pulled open by anchoring filaments? Lymphology. 1980;13:120–9.PubMedGoogle Scholar
  26. 26.
    Gerli R, Ibba L, Fruschelli C. Ultrastructural cytochemistry of anchoring filaments of human lymphatic capillaries and their relation to elastic fibers. Lymphology. 1991;24:105–12.PubMedGoogle Scholar
  27. 27.
    Kielty CM, Wess TJ, Haston L, et al. Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. J Muscle Res Cell Motil. 2002;23:581–96.PubMedCrossRefGoogle Scholar
  28. 28.
    Ramirez F, Sakai LY. Biogenesis and function of fibrillin assemblies. Cell Tissue Res. 2010;339:71–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Gerli R, Ibba L, Fruschelli C. A fibrillar elastic apparatus around human lymph capillaries. Anat Embryol. 1990;181:281–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Sakai LY, Keene DR, Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol. 1986;103:2499–509.PubMedCrossRefGoogle Scholar
  31. 31.
    Weber E, Rossi A, Solito R, et al. Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cells in culture. Microvasc Res. 2002;64:47–55.PubMedCrossRefGoogle Scholar
  32. 32.
    Weber E, Rossi A, Gerli R, et al. Micropatterned hyaluronan surfaces promote lymphatic endothelial cell alignment and orient their growth. Lymphology. 2004;37:15–21.PubMedGoogle Scholar
  33. 33.
    Rossi A, Weber E, Sacchi G, et al. Mechanotransduction in lymphatic endothelial cells. Lymphology. 2007;40:102–13.PubMedGoogle Scholar
  34. 34.
    Burridge K, Turner CE, Romer LH. Tyrosine phosphorylation of paxillin and pp 125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol. 1992;119:893–903.PubMedCrossRefGoogle Scholar
  35. 35.
    Schaller MD, Borgman CA, Cobb BS, et al. pp 125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A. 1992;89:5192–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Rubinfeld H, Seger R. The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol. 2005;31:151–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Sun HW, Li CJ, Chen HQ, et al. Involvement of integrins, MAPK, and NF-kappaB in regulation of the shear stress-induced MMP-9 expression in endothelial cells. Biochem Biophys Res Commun. 2007;353:152–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Coulthard LR, White DE, Jones DL, et al. p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med. 2009;15:369–79.PubMedCrossRefGoogle Scholar
  39. 39.
    Choi JJ, Min DJ, Cho ML, et al. Elevated vascular endothelial growth factor in systemic sclerosis. J Rheumatol. 2003;30:1529–33.PubMedGoogle Scholar
  40. 40.
    Distler O, Del Rosso A, Giacomelli R, et al. Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res. 2002;4:R11.PubMedCrossRefGoogle Scholar
  41. 41.
    Distler O, Distler JH, Scheid A, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004;95:109–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Cutolo M, Pizzorni C, Tuccio M, et al. Nailfold videocapillaroscopic patterns and serum autoantibodies in systemic sclerosis. Rheumatology. 2004;43:719–26.PubMedCrossRefGoogle Scholar
  43. 43.
    Chitale S, Al-Mowallad AF, Wang Q, et al. High circulating levels of VEGF-C suggest abnormal lymphangiogenesis in systemic sclerosis. Rheumatology (Oxford). 2008;47:1727–8.CrossRefGoogle Scholar
  44. 44.
    Leu AJ, Gretener SB, Enderlin S, et al. Lymphatic microangiopathy of the skin in systemic sclerosis. Rheumatology (Oxford). 1999;38:221–7.CrossRefGoogle Scholar
  45. 45.
    Rossi A, Sozio F, Sestini P, et al. Lymphatic and blood vessels in scleroderma skin, a morphometric analysis. Hum Pathol. 2010;40:366–74.CrossRefGoogle Scholar
  46. 46.
    Oka M, Iwata C, Suzuki HI, et al. Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood. 2008;111:4571–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Clavin NW, Avraham T, Fernandez J, et al. TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol. 2008;295:H2113–27.PubMedCrossRefGoogle Scholar
  48. 48.
    Tanaka T, Damião AO, Gabriel Júnior A, et al. Protein-losing enteropathy in systemic lupus erythematosus. Rev Hosp Clin Fac Med Sao Paulo. 1991;46:34–7.PubMedGoogle Scholar
  49. 49.
    Pruim B, Strutton G, Congdon S, et al. Cutaneous histiocytic lymphangitis: an unusual manifestation of rheumatoid arthritis. Australas J Dermatol. 2000;41:101–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Takiwaki H, Adachi A, Kohno H, et al. Intravascular or intralymphatic histiocytosis associated with rheumatoid arthritis: a report of 4 cases. J Am Acad Dermatol. 2004;50:585–90.PubMedCrossRefGoogle Scholar
  51. 51.
    Jurisic G, Detmar M. Lymphatic endothelium in health and disease. Cell Tissue Res. 2009;335:97–108.PubMedCrossRefGoogle Scholar
  52. 52.
    Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 2008;454:656–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Thompson M, Korourian S, Henry-Tillman R, et al. Axillary reverse mapping (ARM): a new concept to identify and enhance lymphatic preservation. Ann Surg Oncol. 2007;14:1890–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Casabona F, Bogliolo S, Ferrero S, et al. Axillary reverse mapping in breast cancer: a new microsurgical lymphatic-venous procedure in the prevention of arm lymphedema. Ann Surg Oncol. 2008;15:3318–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Matsumura G, Hibino N, Ikada Y, et al. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials. 2003;24:2303–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Pasqui D, Rossi A, Barbucci R, et al. Hyaluronan and sulphated hyaluronan micropatterns: effect of chemical and topographic cues on lymphatic endothelial cell alignment and proliferation. Lymphology. 2005;38:50–65.PubMedGoogle Scholar
  58. 58.
    Rossi A, Pasqui D, Barbucci R, et al. The topography of microstructured surfaces differently affects fibrillin deposition by blood and lymphatic endothelial cells in culture. Tissue Eng Part A. 2009;15:525–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Elisabetta Weber
    • 1
  • Francesca Sozio
    • 1
  • Erica Gabbrielli
    • 1
  • Antonella Rossi
    • 1
  1. 1.Department of Neuroscience, Molecular Medicine SectionUniversity of SienaSienaItaly

Personalised recommendations