Skip to main content

Lymphatic Vessels in Health and Disease

  • Chapter
  • First Online:
Translational Vascular Medicine
  • 610 Accesses

Abstract

The difficulty to recognize lymphatic vessels in common histological sections, particularly when they are collapsed, as they very often do, has long hampered research on lymphatics in spite of their universally accepted importance in tissue homeostasis, inflammation, immunity, and tumor spreading. The only positive identification criteria were the ultrastructural detection of a discontinuous basement membrane and anchoring filaments. Two recent discoveries have dramatically changed the interest of the scientific community in this long neglected field: the discovery of lymphatic-specific growth factors (vascular endothelial growth factor C and D) and the discovery of lymphatic markers (vascular endothelial growth factor receptor 3, Lyve-1, Prox1, and podoplanin). The role of lymphatics in several pathological conditions has so been elucidated, opening the possibility of new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995;92:3566–70.

    Article  PubMed  CAS  Google Scholar 

  2. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. Embo J. 1996;15:290–8.

    PubMed  CAS  Google Scholar 

  3. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997;276:1423–5.

    Article  PubMed  CAS  Google Scholar 

  4. Irrthum A, Karkkainen MJ, Devriendt K, et al. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. 2000;67:295–301.

    Article  PubMed  CAS  Google Scholar 

  5. Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 2000;25:153–9.

    Article  PubMed  CAS  Google Scholar 

  6. Sleeman JP, Krishnan J, Kirkin V, et al. Markers for the lymphatic endothelium: in search of the holy grail? Microsc Res Tech. 2001;55:61–9.

    Article  PubMed  CAS  Google Scholar 

  7. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98:769–78.

    Article  PubMed  CAS  Google Scholar 

  8. Hong YK, Harvey N, Noh YH, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn. 2002;225:351–7.

    Article  PubMed  CAS  Google Scholar 

  9. Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 1999;144:789–801.

    Article  PubMed  CAS  Google Scholar 

  10. Kahn HJ, Marks A. A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab Invest. 2002;82:1255–7.

    PubMed  Google Scholar 

  11. Schacht V, Dadras SS, Johnson LA, et al. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 2005;166:913–21.

    Article  PubMed  CAS  Google Scholar 

  12. Schacht V, Ramirez MI, Hong YK, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. Embo J. 2003;22:3546–56.

    Article  PubMed  CAS  Google Scholar 

  13. Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat. 1902;1:367–91.

    Article  Google Scholar 

  14. Detmar M, Hirakawa S. The formation of lymphatic vessels and its importance in the setting of malignancy. J Exp Med. 2002;196:713–8.

    Article  PubMed  CAS  Google Scholar 

  15. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature. 2005;438:946–53.

    Article  PubMed  CAS  Google Scholar 

  16. Petrova TV, Karpanen T, Norrmén C, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med. 2004;10:974–81.

    Article  PubMed  CAS  Google Scholar 

  17. Goldman J, Rutkowski JM, Shields JD, et al. Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. Faseb J. 2007;21:1003–12.

    Article  PubMed  CAS  Google Scholar 

  18. Kajiya K, Hirakawa S, Ma B, et al. Hepatocyte growth factor promotes lymphatic vessel formation and function. Embo J. 2005;24:2885–95.

    Article  PubMed  CAS  Google Scholar 

  19. Maruyama K, Ii M, Cursiefen C, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest. 2005;115:2363–72.

    Article  PubMed  CAS  Google Scholar 

  20. Hirakawa S, Kodama S, Kunstfeld R, et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 2005;201:1089–99.

    Article  PubMed  CAS  Google Scholar 

  21. Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.

    Article  PubMed  CAS  Google Scholar 

  22. Sacchi G, Weber E, Aglianò M, et al. The structure of superficial lymphatics in the human thigh: precollectors. Anat Rec. 1997;247:53–62.

    Article  PubMed  CAS  Google Scholar 

  23. Sacchi G, Weber E, Aglianò M, et al. Lymphatic vessels of the human heart: precollectors and collecting vessels. A morpho-structural study. J Submicrosc Cytol Pathol. 1999;31:515–25.

    PubMed  CAS  Google Scholar 

  24. Leak LV, Burke JF. Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat. 1966;118:785–809.

    Article  PubMed  CAS  Google Scholar 

  25. Casley Smith JR. Are the initial lymphatics normally pulled open by anchoring filaments? Lymphology. 1980;13:120–9.

    PubMed  CAS  Google Scholar 

  26. Gerli R, Ibba L, Fruschelli C. Ultrastructural cytochemistry of anchoring filaments of human lymphatic capillaries and their relation to elastic fibers. Lymphology. 1991;24:105–12.

    PubMed  CAS  Google Scholar 

  27. Kielty CM, Wess TJ, Haston L, et al. Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. J Muscle Res Cell Motil. 2002;23:581–96.

    Article  PubMed  CAS  Google Scholar 

  28. Ramirez F, Sakai LY. Biogenesis and function of fibrillin assemblies. Cell Tissue Res. 2010;339:71–82.

    Article  PubMed  CAS  Google Scholar 

  29. Gerli R, Ibba L, Fruschelli C. A fibrillar elastic apparatus around human lymph capillaries. Anat Embryol. 1990;181:281–6.

    Article  PubMed  CAS  Google Scholar 

  30. Sakai LY, Keene DR, Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol. 1986;103:2499–509.

    Article  PubMed  CAS  Google Scholar 

  31. Weber E, Rossi A, Solito R, et al. Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cells in culture. Microvasc Res. 2002;64:47–55.

    Article  PubMed  CAS  Google Scholar 

  32. Weber E, Rossi A, Gerli R, et al. Micropatterned hyaluronan surfaces promote lymphatic endothelial cell alignment and orient their growth. Lymphology. 2004;37:15–21.

    PubMed  CAS  Google Scholar 

  33. Rossi A, Weber E, Sacchi G, et al. Mechanotransduction in lymphatic endothelial cells. Lymphology. 2007;40:102–13.

    PubMed  CAS  Google Scholar 

  34. Burridge K, Turner CE, Romer LH. Tyrosine phosphorylation of paxillin and pp 125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol. 1992;119:893–903.

    Article  PubMed  CAS  Google Scholar 

  35. Schaller MD, Borgman CA, Cobb BS, et al. pp 125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A. 1992;89:5192–6.

    Article  PubMed  CAS  Google Scholar 

  36. Rubinfeld H, Seger R. The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol. 2005;31:151–74.

    Article  PubMed  CAS  Google Scholar 

  37. Sun HW, Li CJ, Chen HQ, et al. Involvement of integrins, MAPK, and NF-kappaB in regulation of the shear stress-induced MMP-9 expression in endothelial cells. Biochem Biophys Res Commun. 2007;353:152–8.

    Article  PubMed  CAS  Google Scholar 

  38. Coulthard LR, White DE, Jones DL, et al. p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med. 2009;15:369–79.

    Article  PubMed  CAS  Google Scholar 

  39. Choi JJ, Min DJ, Cho ML, et al. Elevated vascular endothelial growth factor in systemic sclerosis. J Rheumatol. 2003;30:1529–33.

    PubMed  CAS  Google Scholar 

  40. Distler O, Del Rosso A, Giacomelli R, et al. Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res. 2002;4:R11.

    Article  PubMed  Google Scholar 

  41. Distler O, Distler JH, Scheid A, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004;95:109–16.

    Article  PubMed  CAS  Google Scholar 

  42. Cutolo M, Pizzorni C, Tuccio M, et al. Nailfold videocapillaroscopic patterns and serum autoantibodies in systemic sclerosis. Rheumatology. 2004;43:719–26.

    Article  PubMed  CAS  Google Scholar 

  43. Chitale S, Al-Mowallad AF, Wang Q, et al. High circulating levels of VEGF-C suggest abnormal lymphangiogenesis in systemic sclerosis. Rheumatology (Oxford). 2008;47:1727–8.

    Article  CAS  Google Scholar 

  44. Leu AJ, Gretener SB, Enderlin S, et al. Lymphatic microangiopathy of the skin in systemic sclerosis. Rheumatology (Oxford). 1999;38:221–7.

    Article  CAS  Google Scholar 

  45. Rossi A, Sozio F, Sestini P, et al. Lymphatic and blood vessels in scleroderma skin, a morphometric analysis. Hum Pathol. 2010;40:366–74.

    Article  Google Scholar 

  46. Oka M, Iwata C, Suzuki HI, et al. Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood. 2008;111:4571–9.

    Article  PubMed  CAS  Google Scholar 

  47. Clavin NW, Avraham T, Fernandez J, et al. TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol. 2008;295:H2113–27.

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka T, Damião AO, Gabriel Júnior A, et al. Protein-losing enteropathy in systemic lupus erythematosus. Rev Hosp Clin Fac Med Sao Paulo. 1991;46:34–7.

    PubMed  CAS  Google Scholar 

  49. Pruim B, Strutton G, Congdon S, et al. Cutaneous histiocytic lymphangitis: an unusual manifestation of rheumatoid arthritis. Australas J Dermatol. 2000;41:101–5.

    Article  PubMed  CAS  Google Scholar 

  50. Takiwaki H, Adachi A, Kohno H, et al. Intravascular or intralymphatic histiocytosis associated with rheumatoid arthritis: a report of 4 cases. J Am Acad Dermatol. 2004;50:585–90.

    Article  PubMed  Google Scholar 

  51. Jurisic G, Detmar M. Lymphatic endothelium in health and disease. Cell Tissue Res. 2009;335:97–108.

    Article  PubMed  CAS  Google Scholar 

  52. Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 2008;454:656–60.

    Article  PubMed  CAS  Google Scholar 

  53. Thompson M, Korourian S, Henry-Tillman R, et al. Axillary reverse mapping (ARM): a new concept to identify and enhance lymphatic preservation. Ann Surg Oncol. 2007;14:1890–5.

    Article  PubMed  Google Scholar 

  54. Casabona F, Bogliolo S, Ferrero S, et al. Axillary reverse mapping in breast cancer: a new microsurgical lymphatic-venous procedure in the prevention of arm lymphedema. Ann Surg Oncol. 2008;15:3318–9.

    Article  PubMed  Google Scholar 

  55. Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532–3.

    Article  PubMed  Google Scholar 

  56. Matsumura G, Hibino N, Ikada Y, et al. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials. 2003;24:2303–8.

    Article  PubMed  CAS  Google Scholar 

  57. Pasqui D, Rossi A, Barbucci R, et al. Hyaluronan and sulphated hyaluronan micropatterns: effect of chemical and topographic cues on lymphatic endothelial cell alignment and proliferation. Lymphology. 2005;38:50–65.

    PubMed  CAS  Google Scholar 

  58. Rossi A, Pasqui D, Barbucci R, et al. The topography of microstructured surfaces differently affects fibrillin deposition by blood and lymphatic endothelial cells in culture. Tissue Eng Part A. 2009;15:525–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank D.J. Abraham, C.P. Denton, K. Khan (UCL Medical School, London), E.A. Renzoni (Royal Brompton Hospital, London), and P. Sestini (University of Siena) for their collaboration in the study of lymphatic vessels in scleroderma skin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Weber, E., Sozio, F., Gabbrielli, E., Rossi, A. (2012). Lymphatic Vessels in Health and Disease. In: Abraham, D., Handler, C., Dashwood, M., Coghlan, G. (eds) Translational Vascular Medicine. Springer, London. https://doi.org/10.1007/978-0-85729-920-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-920-8_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-919-2

  • Online ISBN: 978-0-85729-920-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics