The Therapeutic Potential of Dimethylarginine Dimethylaminohydrolase–Mediated Regulation of Nitric Oxide Synthesis

  • James Leiper
  • Francesca Arrigoni
  • Bierina Ahmetaj


The establishment and progression of cardiovascular disease is associated with endothelial dysfunction. It is widely accepted that nitric oxide production from the vascular endothelium plays a key role in regulation of vascular function in normal health and during disease. Therefore, mechanisms that regulate vascular nitric oxide production have become the focus of significant attention from both vascular biologists and the pharmaceutical industry. The inhibition of nitric oxide synthase activity by endogenously produced competitive inhibitors has recently been linked to reduced nitric oxide synthesis in numerous animal models of disease and several human disease states. In this chapter, we will review the current literature describing these relationships and briefly focus on the pharmacological effects that some of the current therapies for treating these diseases might have on this pathway.


Nitric Oxide ADMA Level Nitric Oxide Synthesis Plasma ADMA ADMA Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McBride AE, Silver PA. State of the arg: protein methylation at arginine comes of age. Cell. 2001;106(1):5–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Boger RH, Sydow K, et al. LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ Res. 2000;87(2):99–105.PubMedGoogle Scholar
  3. 3.
    Chen Y, Xu X, et al. PRMT-1 and DDAHs-induced ADMA upregulation is involved in ROS- and RAS-mediated diabetic retinopathy. Exp Eye Res. 2009;89(6):1028–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Osanai T, Saitoh M, et al. Effect of shear stress on asymmetric dimethylarginine release from vascular endothelial cells. Hypertension. 2003;42(5):985–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Sasser JM, Moningka NC, et al. Asymmetric dimethylarginine in angiotensin II-induced hypertension. Am J Physiol Regul Integr Comp Physiol. 2010;298(3):R740–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Leiper J, Vallance P. New tricks from an old dog: nitric oxide-independent effects of dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol. 2006;26(7):1419–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Vallance P, Leiper J. Cardiovascular biology of the asymmetric dimethylarginine:dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol. 2004;24(6):1023–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function. Mol Cell. 2005;18(3):263–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Hasegawa K, Wakino S, et al. Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Sp1 transcription factor in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(7):1488–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Murray-Rust J, Leiper J, et al. Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase. Nat Struct Biol. 2001;8(8):679–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Cooke JP. Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol. 2000;20(9):2032–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Closs EI, Basha FZ, et al. Interference of L-arginine analogues with L-arginine transport mediated by the y  +  carrier hCAT-2B. Nitric Oxide. 1997;1(1):65–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Broer A, Wagner CA, et al. The heterodimeric amino acid transporter 4F2hc/y  +  LAT2 mediates arginine efflux in exchange with glutamine. Biochem J. 2000;349(Pt 3):787–95.PubMedGoogle Scholar
  14. 14.
    Bogle RG, MacAllister RJ, et al. Induction of NG-monomethyl-L-arginine uptake: a mechanism for differential inhibition of NO synthases? Am J Physiol. 1995;269(3 Pt 1):C750–6.PubMedGoogle Scholar
  15. 15.
    Cardounel AJ, Cui H, et al. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem. 2007;282(2):879–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Boger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “L-arginine paradox” and acts as a novel cardiovascular risk factor. J Nutr. 2004;134(10 Suppl):2842S–7. discussion 2853S.PubMedGoogle Scholar
  17. 17.
    Teerlink T, Luo Z, et al. Cellular ADMA: regulation and action. Pharmacol Res. 2009;60(6):448–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Mann GE, Yudilevich DL, et al. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev. 2003;83(1):183–252.PubMedGoogle Scholar
  19. 19.
    Parnell MM, Chin-Dusting JP, et al. In vivo and in vitro evidence for ACh-stimulated L-arginine uptake. Am J Physiol Heart Circ Physiol. 2004;287(1):H395–400.PubMedCrossRefGoogle Scholar
  20. 20.
    Vallance P, Leone A, et al. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992;339(8793):572–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Vallance P, Leone A, et al. Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J Cardiovasc Pharmacol. 1992;20 Suppl 12:S60–2.PubMedGoogle Scholar
  22. 22.
    Sessa WC, Harrison JK, et al. Genomic analysis and expression patterns reveal distinct genes for endothelial and brain nitric oxide synthase. Hypertension. 1993;21(6 Pt 2):934–8.PubMedGoogle Scholar
  23. 23.
    Busse R, Mulsch A. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett. 1990;265(1–2):133–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Moncada S, Higgs EA. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol. 2006;176(Pt 1):213–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Radomski MW, Palmer RM, et al. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci USA. 1990;87(24):10043–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Murad F, Mittal CK, et al. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res. 1978;9:145–58.PubMedGoogle Scholar
  27. 27.
    Clementi E. Role of nitric oxide and its intracellular signalling pathways in the control of Ca2+ homeostasis. Biochem Pharmacol. 1998;55(6):713–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Eardley I. The role of phosphodiesterase inhibitors in impotence. Expert Opin Investig Drugs. 1997;6(12):1803–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Assreuy J, Cunha FQ, et al. Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br J Pharmacol. 1993;108(3):833–7.PubMedGoogle Scholar
  30. 30.
    Yasinska IM, Kozhukhar AV, et al. S-nitrosation of thioredoxin in the nitrogen monoxide/superoxide system activates apoptosis signal-regulating kinase 1. Arch Biochem Biophys. 2004;428(2):198–203.PubMedCrossRefGoogle Scholar
  31. 31.
    Stamler JS, Singel DJ, et al. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992;258(5090):1898–902.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee JR, Kim JK, et al. Role of protein tyrosine nitration in neurodegenerative diseases and atherosclerosis. Arch Pharm Res. 2009;32(8):1109–18.PubMedCrossRefGoogle Scholar
  33. 33.
    Venardos K, Zhang WZ, et al. Effect of peroxynitrite on endothelial L-arginine transport and metabolism. Int J Biochem Cell Biol. 2009;41(12):2522–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Cooke JP. NO and angiogenesis. Atheroscler Suppl. 2003;4(4):53–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Goligorsky MS, Abedi H, et al. Nitric oxide modulation of focal adhesions in endothelial cells. Am J Physiol. 1999;276(6 Pt 1):C1271–81.PubMedGoogle Scholar
  36. 36.
    Murohara TAT. Nitric oxide and angiogenesis in cardiovascular disease. Antioxid Redox Signal. 2002;4(5):825–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Olsson AK, Dimberg A, et al. VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Murohara T, Asahara T. Nitric oxide and angiogenesis in cardiovascular disease. Antioxid Redox Signal. 2002;4(5):825–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Dowling RB, Newton R, et al. Effect of inhibition of nitric oxide synthase on pseudomonas aeruginosa infection of respiratory mucosa in vitro. Am J Respir Cell Mol Biol. 1998;19(6):950–8.PubMedGoogle Scholar
  40. 40.
    Ueda S, Kato S, et al. Regulation of cytokine-induced nitric oxide synthesis by asymmetric dimethylarginine: role of dimethylarginine dimethylaminohydrolase. Circ Res. 2003;92(2):226–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Boger RH. The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res. 2003;59(4):824–33.PubMedCrossRefGoogle Scholar
  42. 42.
    Schnabel R, Blankenberg S, et al. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study. Circ Res. 2005;97(5):e53–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Tanaka M, Sydow K, et al. Dimethylarginine dimethylaminohydrolase overexpression suppresses graft coronary artery disease. Circulation. 2005;112(11):1549–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Jiang DJ, Jia SJ, et al. Asymmetric dimethylarginine induces apoptosis via p38 MAPK/caspase-3-dependent signaling pathway in endothelial cells. J Mol Cell Cardiol. 2006;40(4):529–39.PubMedCrossRefGoogle Scholar
  45. 45.
    Wells SM, Holian A. Asymmetric dimethylarginine induces oxidative and nitrosative stress in murine lung epithelial cells. Am J Respir Cell Mol Biol. 2007;36(5):520–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Furukawa Y, Kimura T. Hypertension in patients with ischemic heart disease. Nippon Rinsho. 2004;62 Suppl 3:465–70.PubMedGoogle Scholar
  47. 47.
    Grattagliano I, Portincasa P, et al. Experimental observations and clinical implications of fasting and diet supplementation in fatty livers. Eur Rev Med Pharmacol Sci. 2003;7(1):1–7.PubMedGoogle Scholar
  48. 48.
    Horowitz JD, Heresztyn T. An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: methodological considerations. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;851(1–2):42–50.PubMedGoogle Scholar
  49. 49.
    Billecke SS, D’Alecy LG, et al. Blood content of asymmetric dimethylarginine: new insights into its dysregulation in renal disease. Nephrol Dial Transplant. 2009;24(2):489–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Fleck C, Schweitzer F, et al. Serum concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine in patients with chronic kidney diseases. Clin Chim Acta. 2003;336(1–2):1–12.PubMedCrossRefGoogle Scholar
  51. 51.
    Marescau B, Nagels G, et al. Guanidino compounds in serum and urine of nondialyzed patients with chronic renal insufficiency. Metabolism. 1997;46(9):1024–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Nijveldt RJ, Van Leeuwen PA, et al. Net renal extraction of asymmetrical (ADMA) and symmetrical (SDMA) dimethylarginine in fasting humans. Nephrol Dial Transplant. 2002;17(11):1999–2002.PubMedCrossRefGoogle Scholar
  53. 53.
    Schmidt RJ, Baylis C. Total nitric oxide production is low in patients with chronic renal disease. Kidney Int. 2000;58(3):1261–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Leiper JM, Santa Maria J, et al. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem J. 1999;343(Pt 1):209–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Tran CT, Fox MF, et al. Chromosomal localization, gene structure, and expression pattern of DDAH1: comparison with DDAH2 and implications for evolutionary origins. Genomics. 2000;68(1):101–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Kimoto M, Tsuji H, et al. Detection of NG, NG-dimethylarginine dimethylaminohydrolase in the nitric oxide-generating systems of rats using monoclonal antibody. Arch Biochem Biophys. 1993;300(2):657–62.PubMedCrossRefGoogle Scholar
  57. 57.
    Nijveldt RJ, Teerlink T, et al. The liver is an important organ in the metabolism of asymmetrical dimethylarginine (ADMA). Clin Nutr. 2003;22(1):17–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Nijveldt RJ, Teerlink T, et al. Asymmetrical dimethylarginine (ADMA) in critically ill patients: high plasma ADMA concentration is an independent risk factor of ICU mortality. Clin Nutr. 2003;22(1):23–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Tojo A, Welch WJ, et al. Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney. Kidney Int. 1997;52(6):1593–601.PubMedCrossRefGoogle Scholar
  60. 60.
    Leiper J, Nandi M, et al. Disruption of methylarginine metabolism impairs vascular homeostasis. Nat Med. 2007;13(2):198–203.PubMedCrossRefGoogle Scholar
  61. 61.
    Onozato ML, Tojo A, et al. Expression of NG, NG-dimethylarginine dimethylaminohydrolase and protein arginine N-methyltransferase isoforms in diabetic rat kidney: effects of angiotensin II receptor blockers. Diabetes. 2008;57(1):172–80.PubMedCrossRefGoogle Scholar
  62. 62.
    Ogawa T, Kimoto M, et al. Purification and properties of a new enzyme, NG, NG-dimethylarginine dimethylaminohydrolase, from rat kidney. J Biol Chem. 1989;264(17):10205–9.PubMedGoogle Scholar
  63. 63.
    Forbes SP, Druhan LJ, et al. Mechanism of 4-HNE mediated inhibition of hDDAH-1: implications in no regulation. Biochemistry. 2008;47(6):1819–26.PubMedCrossRefGoogle Scholar
  64. 64.
    Hong L, Fast W. Inhibition of human dimethylarginine dimethylaminohydrolase-1 by S-nitroso-L-homocysteine and hydrogen peroxide. Analysis, quantification, and implications for hyperhomocysteinemia. J Biol Chem. 2007;282(48):34684–92.PubMedCrossRefGoogle Scholar
  65. 65.
    Achan V, Tran CT, et al. All-trans-retinoic acid increases nitric oxide synthesis by endothelial cells: a role for the induction of dimethylarginine dimethylaminohydrolase. Circ Res. 2002;90(7):764–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Wang J, Sim AS, et al. Relations between plasma asymmetric dimethylarginine (ADMA) and risk factors for coronary disease. Atherosclerosis. 2006;184(2):383–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang J, Sim AS, et al. L-arginine regulates asymmetric dimethylarginine metabolism by inhibiting dimethylarginine dimethylaminohydrolase activity in hepatic (HepG2) cells. Cell Mol Life Sci. 2006;63(23):2838–46.PubMedCrossRefGoogle Scholar
  68. 68.
    Schulman SP, Becker LC, et al. L-arginine therapy in acute myocardial infarction: the Vascular Interaction with Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA. 2006;295(1):58–64.PubMedCrossRefGoogle Scholar
  69. 69.
    Leiper J, Murray-Rust J, et al. S-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase. Proc Natl Acad Sci USA. 2002;99(21):13527–32.PubMedCrossRefGoogle Scholar
  70. 70.
    Sakurada M, Shichiri M, et al. Nitric oxide upregulates dimethylarginine dimethylaminohydrolase-2 via cyclic GMP induction in endothelial cells. Hypertension. 2008;52(5):903–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Holden DP, Cartwright JE, et al. Estrogen stimulates dimethylarginine dimethylaminohydrolase activity and the metabolism of asymmetric dimethylarginine. Circulation. 2003;108(13):1575–80.PubMedCrossRefGoogle Scholar
  72. 72.
    Monsalve E, Oviedo PJ, et al. Estradiol counteracts oxidized LDL-induced asymmetric ­dimethylarginine production by cultured human endothelial cells. Cardiovasc Res. 2007;73(1):66–72.PubMedCrossRefGoogle Scholar
  73. 73.
    Eid HM, Lyberg T, et al. Insulin and adiponectin inhibit the TNFalpha-induced ADMA accumulation in human endothelial cells: the role of DDAH. Atherosclerosis. 2007;194(2):e1–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Scalera F, Martens-Lobenhoffer J, et al. Effect of telmisartan on nitric oxide–asymmetrical dimethylarginine system: role of angiotensin II type 1 receptor gamma and peroxisome proliferator activated receptor gamma signaling during endothelial aging. Hypertension. 2008;51(3):696–703.PubMedCrossRefGoogle Scholar
  75. 75.
    Wakino S, Hayashi K. Anti-hypertensive effects of PPARgamma ligands through the inhibition of Rho/Rho kinase pathway. Nippon Rinsho. 2005;63(4):693–9.PubMedGoogle Scholar
  76. 76.
    Tanaka M, Osanai T, et al. Effect of vasoconstrictor coupling factor 6 on gene expression profile in human vascular endothelial cells: enhanced release of asymmetric dimethylarginine. J Hypertens. 2006;24(3):489–97.PubMedCrossRefGoogle Scholar
  77. 77.
    Ito A, Tsao PS, et al. Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation. 1999;99(24):3092–5.PubMedGoogle Scholar
  78. 78.
    Xin HY, Jiang DJ, et al. Regulation by DDAH/ADMA pathway of lipopolysaccharide-induced tissue factor expression in endothelial cells. Thromb Haemost. 2007;97(5):830–8.PubMedGoogle Scholar
  79. 79.
    Wadham C, Mangoni AA. Dimethylarginine dimethylaminohydrolase regulation: a novel therapeutic target in cardiovascular disease. Expert Opin Drug Metab Toxicol. 2009;5(3):303–19.PubMedCrossRefGoogle Scholar
  80. 80.
    Boger RH, Bode-Boger SM, et al. Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation. 1997;95(8):2068–74.PubMedGoogle Scholar
  81. 81.
    Miyazaki H, Matsuoka H, et al. Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation. 1999;99(9):1141–6.PubMedGoogle Scholar
  82. 82.
    Valkonen VP, Paiva H, et al. Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet. 2001;358(9299):2127–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Yoo JH, Lee SC. Elevated levels of plasma homocyst(e)ine and asymmetric dimethylarginine in elderly patients with stroke. Atherosclerosis. 2001;158(2):425–30.PubMedCrossRefGoogle Scholar
  84. 84.
    Zoccali C, Bode-Boger S, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet. 2001;358(9299):2113–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Boger RH, Bode-Boger SM, et al. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation. 1998;98(18):1842–7.PubMedGoogle Scholar
  86. 86.
    Lundman P, Eriksson MJ, et al. Mild-to-moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine. J Am Coll Cardiol. 2001;38(1):111–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Sydow K, Munzel T. ADMA and oxidative stress. Atheroscler Suppl. 2003;4(4):41–51.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang D, Gill PS, et al. Isoform-specific regulation by N(G), N(G)-dimethylarginine dimethylaminohydrolase of rat serum asymmetric dimethylarginine and vascular endothelium-derived relaxing factor/NO. Circ Res. 2007;101(6):627–35.PubMedCrossRefGoogle Scholar
  89. 89.
    Smith CL, Birdsey GM, et al. Dimethylarginine dimethylaminohydrolase activity modulates ADMA levels, VEGF expression, and cell phenotype. Biochem Biophys Res Commun. 2003;308(4):984–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Kostourou V, Robinson SP, et al. Dimethylarginine dimethylaminohydrolase I enhances tumour growth and angiogenesis. Br J Cancer. 2002;87(6):673–80.PubMedCrossRefGoogle Scholar
  91. 91.
    Konishi H, Sydow K, et al. Dimethylarginine dimethylaminohydrolase promotes endothelial repair after vascular injury. J Am Coll Cardiol. 2007;49(10):1099–105.PubMedCrossRefGoogle Scholar
  92. 92.
    Achan V, Ho HK, et al. ADMA regulates angiogenesis: genetic and metabolic evidence. Vasc Med. 2005;10(1):7–14.PubMedCrossRefGoogle Scholar
  93. 93.
    Wojciak-Stothard B, Torondel B, et al. The ADMA/DDAH pathway is a critical regulator of endothelial cell motility. J Cell Sci. 2007;120(Pt 6):929–42.PubMedCrossRefGoogle Scholar
  94. 94.
    Hoefen RJ, Berk BC. The role of MAP kinases in endothelial activation. Vascul Pharmacol. 2002;38(5):271–3.PubMedCrossRefGoogle Scholar
  95. 95.
    Thum T, Tsikas D, et al. Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. J Am Coll Cardiol. 2005;46(9):1693–701.PubMedCrossRefGoogle Scholar
  96. 96.
    Peterson DA, Peterson DC, et al. The non specificity of specific nitric oxide synthase inhibitors. Biochem Biophys Res Commun. 1992;187(2):797–801.PubMedCrossRefGoogle Scholar
  97. 97.
    Buxton IL, Cheek DJ, et al. NG-nitro L-arginine methyl ester and other alkyl esters of arginine are muscarinic receptor antagonists. Circ Res. 1993;72(2):387–95.PubMedGoogle Scholar
  98. 98.
    Brusilow SW, Horwich AL, Urea cycle enzymes, Scribres C, Beardet A, slyw, Valle D, editors. The metabolic basis of inherited disease (6th), Mc Graw-Hill, New York 1989; p. 629–63Google Scholar
  99. 99.
    Juretić ASG, Hörig H, Gross T, Gallati H, Samija M, Eljuga D, et al. Nitric oxide-independent inhibitory effects of L-arginine analog NG-monomethy-L-arginine on the generation of interleukin-2 activated cytotoxic activity in humans. Clin Nutr. 1996;15(1):16–20.PubMedCrossRefGoogle Scholar
  100. 100.
    Matsumoto Y, Ueda S, et al. Dimethylarginine dimethylaminohydrolase prevents progression of renal dysfunction by inhibiting loss of peritubular capillaries and tubulointerstitial fibrosis in a rat model of chronic kidney disease. J Am Soc Nephrol. 2007;18(5):1525–33.PubMedCrossRefGoogle Scholar
  101. 101.
    Suda O, Tsutsui M, et al. Long-term treatment with N(omega)-nitro-L-arginine methyl ester causes arteriosclerotic coronary lesions in endothelial nitric oxide synthase-deficient mice. Circulation. 2002;106(13):1729–35.PubMedCrossRefGoogle Scholar
  102. 102.
    Suda O, Tsutsui M, et al. Asymmetric dimethylarginine produces vascular lesions in endothelial nitric oxide synthase-deficient mice: involvement of renin-angiotensin system and oxidative stress. Arterioscler Thromb Vasc Biol. 2004;24(9):1682–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Hultstrom M, Helle F, et al. AT(1) receptor activation regulates the mRNA expression of CAT1, CAT2, arginase-1, and DDAH2 in preglomerular vessels from angiotensin II hypertensive rats. Am J Physiol Renal Physiol. 2009;297(1):F163–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Helle F, Hultstrom M, et al. Angiotensin II-induced contraction is attenuated by nitric oxide in afferent arterioles from the nonclipped kidney in 2K1C. Am J Physiol Renal Physiol. 2009;296(1):F78–86.PubMedCrossRefGoogle Scholar
  105. 105.
    Tran CT, Leiper JM, et al. The DDAH/ADMA/NOS pathway. Atheroscler Suppl. 2003;4(4):33–40.PubMedCrossRefGoogle Scholar
  106. 106.
    Mookerjee RP, Malaki M, et al. Increasing dimethylarginine levels are associated with adverse clinical outcome in severe alcoholic hepatitis. Hepatology. 2007;45(1):62–71.PubMedCrossRefGoogle Scholar
  107. 107.
    Baylis C. Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat Clin Pract Nephrol. 2006;2(4):209–20.PubMedCrossRefGoogle Scholar
  108. 108.
    Kielstein JT, Salpeter SR, et al. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function – a meta-analysis. Nephrol Dial Transplant. 2006;21(9):2446–51.PubMedCrossRefGoogle Scholar
  109. 109.
    Matsuguma K, Ueda S, et al. Molecular mechanism for elevation of asymmetric dimethylarginine and its role for hypertension in chronic kidney disease. J Am Soc Nephrol. 2006;17(8):2176–83.PubMedCrossRefGoogle Scholar
  110. 110.
    Kielstein JT, Boger RH, et al. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J Am Soc Nephrol. 2002;13(1):170–6.PubMedGoogle Scholar
  111. 111.
    Fliser D, Kronenberg F, et al. Asymmetric dimethylarginine and progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol. 2005;16(8):2456–61.PubMedCrossRefGoogle Scholar
  112. 112.
    Zatz R, Baylis C. Chronic nitric oxide inhibition model six years on. Hypertension. 1998;32(6):958–64.PubMedGoogle Scholar
  113. 113.
    Kang DH, Nakagawa T, et al. Nitric oxide modulates vascular disease in the remnant kidney model. Am J Pathol. 2002;161(1):239–48.PubMedCrossRefGoogle Scholar
  114. 114.
    Ravani P, Tripepi G, et al. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol. 2005;16(8):2449–55.PubMedCrossRefGoogle Scholar
  115. 115.
    Abedini S, Meinitzer A, et al. Asymmetrical dimethylarginine is associated with renal and cardiovascular outcomes and all-cause mortality in renal transplant recipients. Kidney Int. 2010;77(1):44–50.PubMedCrossRefGoogle Scholar
  116. 116.
    Chan CT, Harvey PJ, et al. Dissociation between the short-term effects of nocturnal ­hemodialysis on endothelium dependent vasodilation and plasma ADMA. Arterioscler Thromb Vasc Biol. 2005;25(12):2685–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Baigent C, Burbury K, et al. Premature cardiovascular disease in chronic renal failure. Lancet. 2000;356(9224):147–52.PubMedCrossRefGoogle Scholar
  118. 118.
    Brunner H, Cockcroft JR, et al. Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23(2):233–46.PubMedCrossRefGoogle Scholar
  119. 119.
    D’Agostino Sr RB, Vasan RS, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53.PubMedCrossRefGoogle Scholar
  120. 120.
    Ducloux D, Kazory A, et al. Predicting coronary heart disease in renal transplant recipients: a prospective study. Kidney Int. 2004;66(1):441–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Kasiske BL, Chakkera HA, et al. Explained and unexplained ischemic heart disease risk after renal transplantation. J Am Soc Nephrol. 2000;11(9):1735–43.PubMedGoogle Scholar
  122. 122.
    Zoccali C, Benedetto FA, et al. Asymmetric dimethylarginine, C-reactive protein, and carotid intima-media thickness in end-stage renal disease. J Am Soc Nephrol. 2002;13(2):490–6.PubMedGoogle Scholar
  123. 123.
    Boger RH, Bode-Boger SM, et al. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2000;20(6):1557–64.PubMedCrossRefGoogle Scholar
  124. 124.
    Lentz SR, Rodionov RN, et al. Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atheroscler Suppl. 2003;4(4):61–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Achan V, Broadhead M, et al. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol. 2003;23(8):1455–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Maas R, Schulze F, et al. Asymmetric dimethylarginine, smoking, and risk of coronary heart disease in apparently healthy men: prospective analysis from the population-based Monitoring of Trends and Determinants in Cardiovascular Disease/Kooperative Gesundheitsforschung in der Region Augsburg study and experimental data. Clin Chem. 2007;53(4):693–701.PubMedCrossRefGoogle Scholar
  127. 127.
    Schulze F, Lenzen H, et al. Asymmetric dimethylarginine is an independent risk factor for coronary heart disease: results from the multicenter Coronary Artery Risk Determination investigating the Influence of ADMA Concentration (CARDIAC) study. Am Heart J. 2006;152(3):493 e1–8.CrossRefGoogle Scholar
  128. 128.
    Stuhlinger MC, Oka RK, et al. Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine. Circulation. 2003;108(8):933–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Stuhlinger MC, Tsao PS, et al. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation. 2001;104(21):2569–75.PubMedCrossRefGoogle Scholar
  130. 130.
    Mato JM, Lu SC. Homocysteine, the bad thiol. Hepatology. 2005;41(5):976–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Boger RH, Lentz SR, et al. Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans. Clin Sci (Lond). 2001;100(2):161–7.CrossRefGoogle Scholar
  132. 132.
    Abdelwhab S, Lotfy G, et al. Relation between asymmetric dimethylarginine (ADMA) and hearing loss in patients with renal impairment. Ren Fail. 2008;30(9):877–83.PubMedCrossRefGoogle Scholar
  133. 133.
    Sarafidis PA, Khosla N, et al. Antihypertensive therapy in the presence of proteinuria. Am J Kidney Dis. 2007;49(1):12–26.PubMedCrossRefGoogle Scholar
  134. 134.
    Stefanadi E, Tousoulis D, et al. Inflammatory biomarkers predicting events in atherosclerosis. Curr Med Chem. 2010;17(16):1690–707.PubMedCrossRefGoogle Scholar
  135. 135.
    Arnal JF, Michel JB, Harrison DG. Nitric oxide in the pathogenesis of hypertension. Curr Opin Nephrol Hypertens. 1995;4(2):182–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Dominiczak AF, Bohr DF. Nitric oxide and its putative role in hypertension. Hypertension. 1995;25(6):1202–11.PubMedGoogle Scholar
  137. 137.
    Curgunlu A, Uzun H, et al. Increased circulating concentrations of asymmetric dimethylarginine (ADMA) in white coat hypertension. J Hum Hypertens. 2005;19(8):629–33.PubMedCrossRefGoogle Scholar
  138. 138.
    Ito A, Egashira K, et al. Renin-angiotensin system is involved in the mechanism of increased serum asymmetric dimethylarginine in essential hypertension. Jpn Circ J. 2001;65(9):775–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Perticone F, Sciacqua A, et al. Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol. 2005;46(3):518–23.PubMedCrossRefGoogle Scholar
  140. 140.
    Surdacki A, Nowicki M, et al. Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension. J Cardiovasc Pharmacol. 1999;33(4):652–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Paiva H, Laakso J, et al. Asymmetric dimethylarginine and hemodynamic regulation in middle-aged men. Metabolism. 2006;55(6):771–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Schulze F, Maas R, et al. Determination of a reference value for N(G), N(G)-dimethyl-L-arginine in 500 subjects. Eur J Clin Invest. 2005;35(10):622–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Xia W, Feng W, et al. Increased levels of asymmetric dimethylarginine and C-reactive protein are associated with impaired vascular reactivity in essential hypertension. Clin Exp Hypertens. 2010;32(1):43–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Wang D, Strandgaard S, et al. Asymmetric dimethylarginine, oxidative stress, and vascular nitric oxide synthase in essential hypertension. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R195–200.PubMedCrossRefGoogle Scholar
  145. 145.
    Leonard AM, Chafe LL, et al. Increased salt-sensitivity in endothelial nitric oxide synthase-knockout mice. Am J Hypertens. 2006;19(12):1264–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Carlstrom M, Brown RD, et al. Role of nitric oxide deficiency in the development of hypertension in hydronephrotic animals. Am J Physiol Renal Physiol. 2008;294(2):F362–70.PubMedCrossRefGoogle Scholar
  147. 147.
    Dekker JM, Girman C, et al. Metabolic syndrome and 10-year cardiovascular disease risk in the Hoorn Study. Circulation. 2005;112(5):666–73.PubMedCrossRefGoogle Scholar
  148. 148.
    Reaven GM. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab. 2003;88(6):2399–403.PubMedCrossRefGoogle Scholar
  149. 149.
    Reaven GM, Chen YD. Role of abnormal free fatty acid metabolism in the development of non-insulin-dependent diabetes mellitus. Am J Med. 1988;85(5A):106–12.PubMedCrossRefGoogle Scholar
  150. 150.
    Koh KK, Han SH, et al. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol. 2005;46(11):1978–85.PubMedCrossRefGoogle Scholar
  151. 151.
    Frisbee JC, Samora JB, et al. Exercise training blunts microvascular rarefaction in the metabolic syndrome. Am J Physiol Heart Circ Physiol. 2006;291(5):H2483–92.PubMedCrossRefGoogle Scholar
  152. 152.
    Roberts CK, Barnard RJ, et al. A high-fat, refined-carbohydrate diet induces endothelial dysfunction and oxidant/antioxidant imbalance and depresses NOS protein expression. J Appl Physiol. 2005;98(1):203–10.PubMedCrossRefGoogle Scholar
  153. 153.
    Roberts CK, Vaziri ND, et al. Enhanced NO inactivation and hypertension induced by a high-fat, refined-carbohydrate diet. Hypertension. 2000;36(3):423–9.PubMedGoogle Scholar
  154. 154.
    Sun YX, Hu SJ, et al. Plasma levels of vWF and NO in patients with metabolic syndrome and their relationship with metabolic disorders. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2006;35(3):315–8.PubMedGoogle Scholar
  155. 155.
    Tesauro M, Schinzari F, et al. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation. 2005;112(19):2986–92.PubMedGoogle Scholar
  156. 156.
    Stuhlinger MC, Abbasi F, et al. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA. 2002;287(11):1420–6.PubMedCrossRefGoogle Scholar
  157. 157.
    Facchini FS, Hua N, et al. Insulin resistance as a predictor of age-related diseases. J Clin Endocrinol Metab. 2001;86(8):3574–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Annuk M, Zilmer M et al. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure: impact on cardiovascular disease. Kidney Int. 2003;Suppl(84):S50–3.Google Scholar
  159. 159.
    Lu TM, Ding YA, et al. Effect of rosuvastatin on plasma levels of asymmetric dimethylarginine in patients with hypercholesterolemia. Am J Cardiol. 2004;94(2):157–61.PubMedCrossRefGoogle Scholar
  160. 160.
    Feher MD, Elkeles RS. Lipid modification and coronary heart disease in type 2 diabetes: different from the general population? Heart. 1999;81(1):10–1.PubMedGoogle Scholar
  161. 161.
    Laakso M. Hyperglycemia as a risk factor for cardiovascular disease in type 2 diabetes. Prim Care. 1999;26(4):829–39.PubMedCrossRefGoogle Scholar
  162. 162.
    Choi JW, Pai SH, et al. Increases in nitric oxide concentrations correlate strongly with body fat in obese humans. Clin Chem. 2001;47(6):1106–9.PubMedGoogle Scholar
  163. 163.
    Baron AD, Clark MG. Role of blood flow in the regulation of muscle glucose uptake. Annu Rev Nutr. 1997;17:487–99.PubMedCrossRefGoogle Scholar
  164. 164.
    Montagnani M, Chen H, et al. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem. 2001;276(32):30392–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Muniyappa R, Lee S, et al. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab. 2008;294(1):E15–26.PubMedCrossRefGoogle Scholar
  166. 166.
    Hsueh WA, Quinones MJ. Role of endothelial dysfunction in insulin resistance. Am J Cardiol. 2003;92(4A):10J–7.PubMedCrossRefGoogle Scholar
  167. 167.
    Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest. 1996;98(4):894–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Gonzalez M, Flores C, et al. Cell signalling-mediating insulin increase of mRNA expression for cationic amino acid transporters-1 and -2 and membrane hyperpolarization in human umbilical vein endothelial cells. Pflugers Arch. 2004;448(4):383–94.PubMedCrossRefGoogle Scholar
  169. 169.
    Lin KY, Ito A, et al. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation. 2002;106(8):987–92.PubMedCrossRefGoogle Scholar
  170. 170.
    Xiong Y, Fu YF, et al. Elevated levels of the serum endogenous inhibitor of nitric oxide synthase and metabolic control in rats with streptozotocin-induced diabetes. J Cardiovasc Pharmacol. 2003;42(2):191–6.PubMedCrossRefGoogle Scholar
  171. 171.
    Abbasi F, Asagmi T, et al. Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus. Am J Cardiol. 2001;88(10):1201–3.PubMedCrossRefGoogle Scholar
  172. 172.
    Paiva H, Lehtimaki T, et al. Plasma concentrations of asymmetric-dimethyl-arginine in type 2 diabetes associate with glycemic control and glomerular filtration rate but not with risk factors of vasculopathy. Metabolism. 2003;52(3):303–7.PubMedCrossRefGoogle Scholar
  173. 173.
    Tarnow L, Hovind P, et al. Elevated plasma asymmetric dimethylarginine as a marker of cardiovascular morbidity in early diabetic nephropathy in type 1 diabetes. Diabetes Care. 2004;27(3):765–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Jiang JL, Zhang XH, et al. Probucol decreases asymmetrical dimethylarginine level by alternation of protein arginine methyltransferase I and dimethylarginine dimethylaminohydrolase activity. Cardiovasc Drugs Ther. 2006;20(4):281–94.PubMedCrossRefGoogle Scholar
  175. 175.
    McLaughlin T, Stuhlinger M, et al. Plasma asymmetric dimethylarginine concentrations are elevated in obese insulin-resistant women and fall with weight loss. J Clin Endocrinol Metab. 2006;91(5):1896–900.PubMedCrossRefGoogle Scholar
  176. 176.
    Krzyzanowska K, Mittermayer F, et al. Weight loss reduces circulating asymmetrical dimethylarginine concentrations in morbidly obese women. J Clin Endocrinol Metab. 2004;89(12):6277–81.PubMedCrossRefGoogle Scholar
  177. 177.
    Abhary S, Burdon KP, et al. Sequence variation in DDAH1 and DDAH2 genes is strongly and additively associated with serum ADMA concentrations in individuals with type 2 diabetes. PLoS One. 2010;5(3):e9462.PubMedCrossRefGoogle Scholar
  178. 178.
    Kim JA, Montagnani M, et al. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113(15):1888–904.PubMedCrossRefGoogle Scholar
  179. 179.
    Ellger B, Debaveye Y, et al. Survival benefits of intensive insulin therapy in critical illness: impact of maintaining normoglycemia versus glycemia-independent actions of insulin. Diabetes. 2006;55(4):1096–105.PubMedCrossRefGoogle Scholar
  180. 180.
    Sorrenti V, Mazza F, et al. High glucose-mediated imbalance of nitric oxide synthase and dimethylarginine dimethylaminohydrolase expression in endothelial cells. Curr Neurovasc Res. 2006;3(1):49–54.PubMedCrossRefGoogle Scholar
  181. 181.
    Ellger B, Richir MC, et al. Glycemic control modulates arginine and asymmetrical-dimethylarginine levels during critical illness by preserving dimethylarginine-dimethylaminohydrolase activity. Endocrinology. 2008;149(6):3148–57.PubMedCrossRefGoogle Scholar
  182. 182.
    Devangelio E, Santilli F, et al. Soluble RAGE in type 2 diabetes: association with oxidative stress. Free Radic Biol Med. 2007;43(4):511–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Santilli F, Bucciarelli L, et al. Decreased plasma soluble RAGE in patients with hypercholesterolemia: effects of statins. Free Radic Biol Med. 2007;43(9):1255–62.PubMedCrossRefGoogle Scholar
  184. 184.
    Lai YL, Aoyama S, et al. Inhibition of L-arginine metabolizing enzymes by L-arginine-derived advanced glycation end products. J Clin Biochem Nutr. 2010;46(2):177–85.PubMedCrossRefGoogle Scholar
  185. 185.
    Yin QF, Xiong Y. Pravastatin restores DDAH activity and endothelium-dependent relaxation of rat aorta after exposure to glycated protein. J Cardiovasc Pharmacol Res. 2005;45(6):525–32.CrossRefGoogle Scholar
  186. 186.
    Kielstein JT, Frolich JC, et al. ADMA (asymmetric dimethylarginine): an atherosclerotic disease mediating agent in patients with renal disease? Nephrol Dial Transplant. 2001;16(9):1742–5.PubMedCrossRefGoogle Scholar
  187. 187.
    Munzel T, Keaney Jr JF. Are ACE inhibitors a “magic bullet” against oxidative stress? Circulation. 2001;104(13):1571–4.PubMedCrossRefGoogle Scholar
  188. 188.
    Delles C, Schneider MP, et al. Angiotensin converting enzyme inhibition and angiotensin II AT1-receptor blockade reduce the levels of asymmetrical N(G), N(G)-dimethylarginine in human essential hypertension. Am J Hypertens. 2002;15(7 Pt 1):590–3.PubMedCrossRefGoogle Scholar
  189. 189.
    Galle J, Schwedhelm E, et al. Antiproteinuric effects of angiotensin receptor blockers: telmisartan versus valsartan in hypertensive patients with type 2 diabetes mellitus and overt nephropathy. Nephrol Dial Transplant. 2008;23(10):3174–83.PubMedCrossRefGoogle Scholar
  190. 190.
    Laufs U, La Fata V, et al. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;97(12):1129–35.PubMedGoogle Scholar
  191. 191.
    Wagner AH, Kohler T, et al. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol. 2000;20(1):61–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Young JM, Strey CH, et al. Effect of atorvastatin on plasma levels of asymmetric dimethylarginine in patients with non-ischaemic heart failure. Eur J Heart Fail. 2008;10(5):463–6.PubMedCrossRefGoogle Scholar
  193. 193.
    Nanayakkara PW, Kiefte-de Jong JC, et al. Randomized placebo-controlled trial assessing a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on plasma asymmetric dimethylarginine concentration in mild to moderate CKD. Am J Kidney Dis. 2009;53(1):41–50.PubMedCrossRefGoogle Scholar
  194. 194.
    Olsson AG, Pears J, et al. Effect of rosuvastatin on low-density lipoprotein cholesterol in patients with hypercholesterolemia. Am J Cardiol. 2001;88(5):504–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Jones SP, Gibson MF, et al. Direct vascular and cardioprotective effects of rosuvastatin, a new HMG-CoA reductase inhibitor. J Am Coll Cardiol. 2002;40(6):1172–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Ivashchenko CY, Bradley BT, et al. Regulation of the ADMA-DDAH system in endothelial cells: a novel mechanism for the sterol response element binding proteins, SREBP1c and −2. Am J Physiol Heart Circ Physiol. 2010;298(1):H251–8.PubMedCrossRefGoogle Scholar
  197. 197.
    Katagiri H, Yamada T, et al. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res. 2007;101(1):27–39.PubMedCrossRefGoogle Scholar
  198. 198.
    Jun T, Ke-yan F, et al. Increased superoxide anion production in humans: a possible mechanism for the pathogenesis of hypertension. J Hum Hypertens. 1996;10(5):305–9.PubMedGoogle Scholar
  199. 199.
    Lacy F, O’Connor DT, et al. Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension. J Hypertens. 1998;16(3):291–303.PubMedCrossRefGoogle Scholar
  200. 200.
    Jiang JL, Li Ns NS, et al. Probucol preserves endothelial function by reduction of the endogenous nitric oxide synthase inhibitor level. Br J Pharmacol. 2002;135(5):1175–82.PubMedCrossRefGoogle Scholar
  201. 201.
    Sener G, Ozer Sehirli A, et al. Taurine treatment protects against chronic nicotine-induced oxidative changes. Fundam Clin Pharmacol. 2005;19(2):155–64.PubMedCrossRefGoogle Scholar
  202. 202.
    Wu QD, Wang JH, et al. Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. Am J Physiol. 1999;277(6 Pt 1):C1229–38.PubMedGoogle Scholar
  203. 203.
    Tan B, Jiang DJ, et al. Taurine protects against low-density lipoprotein-induced endothelial dysfunction by the DDAH/ADMA pathway. Vascul Pharmacol. 2007;46(5):338–45.PubMedCrossRefGoogle Scholar
  204. 204.
    Xiao HB, Jun F, et al. Protective effects of kaempferol against endothelial damage by an improvement in nitric oxide production and a decrease in asymmetric dimethylarginine level. Eur J Pharmacol. 2009;616(1–3):213–22.PubMedCrossRefGoogle Scholar
  205. 205.
    Maret W. Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal. 2006;8(9–10):1419–41.PubMedCrossRefGoogle Scholar
  206. 206.
    Rios-Vazquez R, Marzoa-Rivas R, et al. Peroxisome proliferator-activated receptor-gamma agonists for management and prevention of vascular disease in patients with and without diabetes mellitus. Am J Cardiovasc Drugs. 2006;6(4):231–42.PubMedCrossRefGoogle Scholar
  207. 207.
    Habib ZA, Havstad SL, et al. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(2):592–600.PubMedCrossRefGoogle Scholar
  208. 208.
    Wang TD, Chen WJ, et al. Relation of improvement in endothelium-dependent flow-mediated vasodilation after rosiglitazone to changes in asymmetric dimethylarginine, endothelin-1, and C-reactive protein in nondiabetic patients with the metabolic syndrome. Am J Cardiol. 2006;98(8):1057–62.PubMedCrossRefGoogle Scholar
  209. 209.
    Savoia C, Ebrahimian T, et al. Countervailing vascular effects of rosiglitazone in high cardiovascular risk mice: role of oxidative stress and PRMT-1. Clin Sci (Lond). 2010;118(9):583–92.Google Scholar
  210. 210.
    Kelly AS, Thelen AM, et al. Rosiglitazone improves endothelial function and inflammation but not asymmetric dimethylarginine or oxidative stress in patients with type 2 diabetes mellitus. Vasc Med. 2007;12(4):311–8.PubMedCrossRefGoogle Scholar
  211. 211.
    Richir MC, Ellger B, et al. The effect of rosiglitazone on asymmetric dimethylarginine (ADMA) in critically ill patients. Pharmacol Res. 2009;60(6):519–24.PubMedCrossRefGoogle Scholar
  212. 212.
    Mittermayer F, Schaller G, et al. Rosiglitazone prevents free fatty acid-induced vascular endothelial dysfunction. J Clin Endocrinol Metab. 2007;92(7):2574–80.PubMedCrossRefGoogle Scholar
  213. 213.
    Khan NA, Wiernsperger N, et al. Characterization of metformin transport system in NIH 3T3 cells. J Cell Physiol. 1992;152(2):310–6.PubMedCrossRefGoogle Scholar
  214. 214.
    Asagami T, Abbasi F, et al. Metformin treatment lowers asymmetric dimethylarginine concentrations in patients with type 2 diabetes. Metabolism. 2002;51(7):843–6.PubMedCrossRefGoogle Scholar
  215. 215.
    Heutling D, Schulz H, et al. Asymmetrical dimethylarginine, inflammatory and metabolic parameters in women with polycystic ovary syndrome before and after metformin treatment. J Clin Endocrinol Metab. 2008;93(1):82–90.PubMedCrossRefGoogle Scholar
  216. 216.
    Ozgurtas T, Oktenli C, et al. Metformin and oral contraceptive treatments reduced circulating asymmetric dimethylarginine (ADMA) levels in patients with polycystic ovary syndrome (PCOS). Atherosclerosis. 2008;200(2):336–44.PubMedCrossRefGoogle Scholar
  217. 217.
    Marcovecchio ML, Widmer B, et al. Effect of acute variations of insulin and glucose on plasma concentrations of asymmetric dimethylarginine in young people with type 1 diabetes. Clin Sci (Lond). 2008;115(12):361–9.CrossRefGoogle Scholar
  218. 218.
    Sydow K, Mondon CE, et al. Dimethylarginine dimethylaminohydrolase overexpression enhances insulin sensitivity. Arterioscler Thromb Vasc Biol. 2008;28(4):692–7.PubMedCrossRefGoogle Scholar
  219. 219.
    Panza JA, Casino PR, et al. Effect of increased availability of endothelium-derived nitric oxide precursor on endothelium-dependent vascular relaxation in normal subjects and in patients with essential hypertension. Circulation. 1993;87(5):1475–81.PubMedGoogle Scholar
  220. 220.
    Nitenberg A, Paycha F, et al. Coronary artery responses to physiological stimuli are improved by deferoxamine but not by L-arginine in non-insulin-dependent diabetic patients with angiographically normal coronary arteries and no other risk factors. Circulation. 1998;97(8):736–43.PubMedGoogle Scholar
  221. 221.
    Creager MA, Gallagher SJ, et al. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest. 1992;90(4):1248–53.PubMedCrossRefGoogle Scholar
  222. 222.
    Preli RB, Klein KP, et al. Vascular effects of dietary L-arginine supplementation. Atherosclerosis. 2002;162(1):1–15.PubMedCrossRefGoogle Scholar
  223. 223.
    Blum A, Hathaway L, et al. Effects of oral L-arginine on endothelium-dependent vasodilation and markers of inflammation in healthy postmenopausal women. J Am Coll Cardiol. 2000;35(2):271–6.PubMedCrossRefGoogle Scholar
  224. 224.
    Blum A, Hathaway L, et al. Oral L-arginine in patients with coronary artery disease on medical management. Circulation. 2000;101(18):2160–4.PubMedGoogle Scholar
  225. 225.
    Chin-Dusting JP, Alexander CT, et al. Effects of in vivo and in vitro L-arginine supplementation on healthy human vessels. J Cardiovasc Pharmacol. 1996;28(1):158–66.PubMedCrossRefGoogle Scholar
  226. 226.
    Chin-Dusting JP, Kaye DM, et al. Dietary supplementation with L-arginine fails to restore endothelial function in forearm resistance arteries of patients with severe heart failure. J Am Coll Cardiol. 1996;27(5):1207–13.PubMedCrossRefGoogle Scholar
  227. 227.
    Wilcken DE, Sim AS, et al. Asymmetric dimethylarginine (ADMA) in vascular, renal and hepatic disease and the regulatory role of L-arginine on its metabolism. Mol Genet Metab. 2007;91(4):309–17. discussion 308.PubMedCrossRefGoogle Scholar
  228. 228.
    Arrigoni FI, Vallance P, et al. Metabolism of asymmetric dimethylarginines is regulated in the lung developmentally and with pulmonary hypertension induced by hypobaric hypoxia. Circulation. 2003;107(8):1195–201.PubMedCrossRefGoogle Scholar
  229. 229.
    Celik T, Iyisoy A, et al. The beneficial effects of angiotensin-converting enzyme inhibitors on serum asymmetric dimethylarginine levels in the patients with cardiovascular disease. Int J Cardiol. 2010;142(1):107–9.PubMedCrossRefGoogle Scholar
  230. 230.
    Hsueh WA, Bruemmer D. Peroxisome proliferator-activated receptor gamma: implications for cardiovascular disease. Hypertension. 2004;43(2):297–305.PubMedCrossRefGoogle Scholar
  231. 231.
    Kielstein JT, Impraim B, et al. Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation. 2004;109(2):172–7.PubMedCrossRefGoogle Scholar
  232. 232.
    Mehta JL, Hu B, et al. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. Arterioscler Thromb Vasc Biol. 2003;23(12):2203–8.PubMedCrossRefGoogle Scholar
  233. 233.
    Ngo DT, Sverdlov AL, et al. Correlates of arterial stiffness in an ageing population: role of asymmetric dimethylarginine. Pharmacol Res. 2009;60(6):503–7.PubMedCrossRefGoogle Scholar
  234. 234.
    Organisation, W.-W. H. (current). Cardiovascular Diseases. From
  235. 235.
    Polikandriotis JA, Mazzella LJ, et al. Peroxisome proliferator-activated receptor gamma ligands stimulate endothelial nitric oxide production through distinct peroxisome proliferator-activated receptor gamma-dependent mechanisms. Arterioscler Thromb Vasc Biol. 2005;25(9):1810–6.PubMedCrossRefGoogle Scholar
  236. 236.
    Pope AJ, Karrupiah K, et al. Role of dimethylarginine dimethylaminohydrolases in the regulation of endothelial nitric oxide production. J Biol Chem. 2009;284(51):35338–47.PubMedCrossRefGoogle Scholar
  237. 237.
    Sydow K, Schwedhelm E, et al. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovasc Res. 2003;57(1):244–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • James Leiper
    • 1
  • Francesca Arrigoni
    • 2
  • Bierina Ahmetaj
    • 2
  1. 1.MRC Clinical Sciences CentreHammersmith Hospital, Imperial College LondonLondonUK
  2. 2.School of Pharmacy and ChemistryKingston UniversitySurreyUK

Personalised recommendations