Cytoprotective Mechanisms in the Vasculature



Vascular endothelial injury predisposes to apoptosis, endothelial dysfunction, and atherogenesis. This process may be accelerated in systemic inflammatory diseases such as systemic lupus erythematosus, in diabetes mellitus, chronic renal failure, and post-transplantation. The endothelium has a variety of innate cytoprotective mechanisms aimed at minimizing injury and facilitating repair. These mechanisms may be regulated by both endogenous and exogenous mediators and importantly by patterns of shear stress exerted by the flowing blood. These in turn activate cytoprotective genes such as heme oxygenase-1, endothelial nitric oxide synthase, and B cell lymphoma protein-2. A detailed knowledge of cytoprotective mechanisms and their associated signaling pathways may reveal novel therapeutic targets. These have the potential to provide the means by which the vascular endothelium can be protected against injury, so preventing or retarding accelerated atherogenesis in a variety of disease states.


Vascular Endothelial Growth Factor Systemic Lupus Erythematosus Vascular Endothelium Accelerate Atherosclerosis Systemic Inflammatory Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23(2):168–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Lerman A. Restenosis: another “dysfunction” of the endothelium. Circulation. 2005;111:8–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Stoneman VE, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci. 2004;107:343–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Tedgui A, Mallat Z. Anti-inflammatory mechanisms in the vascular wall. Circ Res. 2001;88:877–87.PubMedCrossRefGoogle Scholar
  6. 6.
    Sattar N, McCarey DW, Capell H, McInnes IB. Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation. 2003;108(24):2957–63.PubMedCrossRefGoogle Scholar
  7. 7.
    del Rincon ID, Williams K, Stern MP, Freeman GL, Escalante A. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 2001;44(12):2737–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Esdaile JM, Abrahamowicz M, Grodzicky T, et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 2001;44:2331–7.PubMedCrossRefGoogle Scholar
  9. 9.
    El-Magadmi M, Bodill H, Ahmad Y, et al. Systemic lupus erythematosus: an independent risk factor for endothelial dysfunction in women. Circulation. 2004;110(4):399–404.PubMedCrossRefGoogle Scholar
  10. 10.
    Recio-Mayoral A, Mason JC, Kaski JC, Rubens MB, Harari OA, Camici PG. Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur Heart J. 2009;30:1837–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Keenan NG, Mason JC, Maceira A, et al. Integrated cardiac and vascular assessment in Takayasu arteritis by cardiovascular magnetic resonance. Arthritis Rheum. 2009;60(11):3501–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Choi HK, Hernan MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet. 2002;359(9313):1173–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Romero F, Rodriguez-Iturbe B, Pons H, et al. Mycophenolate mofetil treatment reduces ­cholesterol-induced atherosclerosis in the rabbit. Atherosclerosis. 2000;152(1):127–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Dixon WG, Watson KD, Lunt M, Hyrich KL, Silman AJ, Symmons DP. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 2007;56(9):2905–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Hermann F, Forster A, Chenevard R, et al. Simvastatin improves endothelial function in patients with rheumatoid arthritis. J Am Coll Cardiol. 2005;45:461–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Flammer AJ, Sudano I, Hermann F, et al. Angiotensin-converting enzyme inhibition improves vascular function in rheumatoid arthritis. Circulation. 2008;117:2262–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med. 2003;348(25):2583–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Feldmann M, Maini SR. Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics. Immunol Rev. 2008;223:7–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Elhage R, Maret A, Pieraggi MT, Thiers JC, Arnal JF, Bayard F. Differential effects of ­interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation. 1998;97(3):242–4.PubMedGoogle Scholar
  20. 20.
    Francis SE, Camp NJ, Dewberry RM, et al. Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease. Circulation. 1999;99(7):861–6.PubMedGoogle Scholar
  21. 21.
    Philippidis P, Mason JC, Evans BJ, et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res. 2004;94:119–26.PubMedCrossRefGoogle Scholar
  22. 22.
    Henke PK, DeBrunye LA, Strieter RM, et al. Viral IL-10 gene transfer decreases inflammation and cell adhesion molecule expression in a rat model of venous thrombosis. J Immunol. 2000;164(4):2131–41.PubMedGoogle Scholar
  23. 23.
    Karsan A, Yee E, Poirier GG, Zhou P, Craig R, Harlan JM. Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms. Am J Pathol. 1997;151(6):1775–84.PubMedGoogle Scholar
  24. 24.
    Mason JC, Lidington EA, Ahmad SR, Haskard DO. bFGF and VEGF synergistically enhance endothelial cytoprotection via decay-accelerating factor upregulation. Am J Physiol Cell Physiol. 2002;282:C578–87.PubMedGoogle Scholar
  25. 25.
    Pendurthi UR, Williams JT, Rao LV. Acidic and basic fibroblast growth factors suppress transcriptional activation of tissue factor and other inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol. 1997;17(5):940–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang H, Issekutz AC. Down-modulation of monocyte transendothelial migration and endothelial adhesion molecule expression by fibroblast growth factor: reversal by the anti-angiogenic agent SU6668. Am J Pathol. 2002;160:2219–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Gaengel K, Genove G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(5):630–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Brindle NP, Saharinen P, Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res. 2006;98(8):1014–23.PubMedCrossRefGoogle Scholar
  29. 29.
    Mason JC, Steinberg R, Lidington EA, Kinderlerer AR, Ohba M, Haskard DO. Decay-accelerating factor induction on vascular endothelium by VEGF is mediated via a VEGF-R2 and PKCα/ε-dependent cytoprotective signaling pathway and is inhibited by cyclosporin A. J Biol Chem. 2004;279:41611–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Steinberg R, Harari OA, Lidington EA, et al. A PKCε/Akt signalling complex protects human vascular endothelial cells against apoptosis through induction of Bcl-2. J Biol Chem. 2007;282:32288–97.PubMedCrossRefGoogle Scholar
  31. 31.
    Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30(8):383–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000;289(5488):2350–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9(1):47–59.PubMedCrossRefGoogle Scholar
  34. 34.
    Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM. The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol. 2001;166:3231–9.PubMedGoogle Scholar
  35. 35.
    Mason JC, Yarwood H, Sugars K, Morgan BP, Davies KA, Haskard DO. Induction of decay-accelerating factor by cytokines or the membrane-attack complex protects vascular endothelial cells against complement deposition. Blood. 1999;94:1673–82.PubMedGoogle Scholar
  36. 36.
    Kinderlerer AR, Steinberg R, Johns M, et al. Statin-induced expression of CD59 on vascular endothelium in hypoxia. A potential mechanism for the anti-inflammatory actions of statins in rheumatoid arthritis. Arthritis Res Ther. 2006;8:R130–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Lidington EA, Haskard DO, Mason JC. Induction of decay-accelerating factor by thrombin through a protease-activated receptor1 and protein kinase C-dependent pathway protects vascular endothelial cells from complement-mediated injury. Blood. 2000;96:2784–92.PubMedGoogle Scholar
  38. 38.
    Ahmad SR, Lidington EA, Ohta R, et al. Decay-accelerating factor induction by TNFα through a phosphatidylinositol-3 kinase and protein kinase C-dependent pathway protects murine vascular endothelial cells against complement deposition. Immunology. 2003;110:258–68.PubMedCrossRefGoogle Scholar
  39. 39.
    Leung VWY, Yun S, Botto M, et al. Decay-accelerating factor suppresses complement C3 activation and retards atherosclerosis in low density lipoprotein receptor deficient mice. Am J Pathol. 2009;175:1757–67.PubMedCrossRefGoogle Scholar
  40. 40.
    Yun S, Leung V, Botto M, Boyle J, Haskard D. Accelerated atherosclerosis in low-density lipoprotein receptor-deficient mice lacking the membrane-bound complement regulator CD59. Arterioscler Thromb Vasc Biol. 2008;28:1714–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Wu G, Hu W, Shahsafaei A, et al. Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex. Circ Res. 2009;104(4):550–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee S, Chen TT, Barber CL, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell. 2007;130(4):691–703.PubMedCrossRefGoogle Scholar
  43. 43.
    Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol. 2006;7:359–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem. 1998;273:13313–6.PubMedCrossRefGoogle Scholar
  45. 45.
    He H, Venema VJ, Guo XL, Venema RC, Marrero MB, Caldwell RB. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through Flk-1/KDR activation of c-Src. J Biol Chem. 1999;274:25130–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Bussolati B, Ahmed A, Pemberton H, et al. Bifunctional role for VEGF-induced heme oxygenase-1 in vivo: induction of angiogenesis and inhibition of leukocytic infiltration. Blood. 2004;103:761–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Mason JC, Lidington EA, Yarwood H, Lublin DM, Haskard DO. Induction of endothelial cell decay-accelerating factor by vascular endothelial growth factor – a mechanism for cytoprotection against complement-mediated injury during inflammatory angiogenesis. Arthritis Rheum. 2001;44:138–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358:1129–36.PubMedCrossRefGoogle Scholar
  49. 49.
    Hurwitz H, Saini S. Bevacizumab in the treatment of metastatic colorectal cancer: safety profile and management of adverse events. Semin Oncol. 2006;33(5 Suppl 10):S26–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Loboda A, Jazwa A, Grochot-Przeczek A, et al. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2008;10:1767–812.PubMedCrossRefGoogle Scholar
  51. 51.
    Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.PubMedCrossRefGoogle Scholar
  52. 52.
    Yachie A, Niida Y, Wada T, et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999;103(1):129–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Kinderlerer AR, Gregoire IP, Hamdulay SS, et al. Heme-oxygenase-1 expression enhances vascular endothelial resistance to complement-mediated injury through induction of decay-accelerating factor. A role for bilirubin and ferritin. Blood. 2009;113:1598–607.PubMedCrossRefGoogle Scholar
  54. 54.
    Soares MP, Lin Y, Anrather J, et al. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med. 1998;4(9):1073–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Wehner J, Morrell CN, Reynolds T, Rodriguez ER, Baldwin 3rd WM. Antibody and complement in transplant vasculopathy. Circ Res. 2007;100(2):191–203.PubMedCrossRefGoogle Scholar
  56. 56.
    Soares MP, Bach FH. Heme oxygenase-1 in organ transplantation. Front Biosci. 2007;12:4932–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Berk BC. Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation. 2008;117(8):1082–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Dimmeler S, Hermann C, Galle J, Zeiher AM. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol. 1999;19:656–64.PubMedCrossRefGoogle Scholar
  59. 59.
    Sheikh S, Rainger G, Gale Z, Rahman M, Nash G. Exposure to fluid shear stress modulates the ability of endothelial cells to recruit neutrophils in response to tumor necrosis factor -alpha: a basis for local variations in vascular sensitivity to inflammation. Blood. 2003;102:2828–34.PubMedCrossRefGoogle Scholar
  60. 60.
    Dekker RJ, van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood. 2002;100(5):1689–98.PubMedCrossRefGoogle Scholar
  61. 61.
    SenBanerjee S, Lin Z, Atkins GB, et al. KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 2004;199:1305–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Parmar KM, Larman HB, Dai G, et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest. 2006;116:49–58.PubMedCrossRefGoogle Scholar
  63. 63.
    Ali F, Hamdulay SS, Kinderlerer AR, et al. Statin-mediated cytoprotection of human vascular endothelial cells: a role for Kruppel-like factor 2-dependent induction of heme oxygenase-1. J Thromb Haemost. 2007;5:2537–46.PubMedCrossRefGoogle Scholar
  64. 64.
    Parmar KM, Nambudiri V, Dai G, Larman HB, Gimbrone Jr MA, Garcia-Cardena G. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J Biol Chem. 2005;280(29):26714–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. 2007;282(18):13769–79.PubMedCrossRefGoogle Scholar
  66. 66.
    Villarreal Jr G, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, Garcia-Cardena G. Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun. 2010;391(1):984–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Dai G, Vaughn S, Zhang Y, Wang ET, Garcia-Cardena G, Gimbrone Jr MA. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ Res. 2007;101(7):723–33.PubMedCrossRefGoogle Scholar
  68. 68.
    Ali F, Zakkar M, Karu K, et al. Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress. J Biol Chem. 2009;284:18882–92.PubMedCrossRefGoogle Scholar
  69. 69.
    Kinderlerer AR, Ali F, Johns M, et al. KLF-2-dependent, shear stress-induced expression of CD59: a novel cytoprotective mechanism against complement-mediated injury in the vascu­lature. J Biol Chem. 2008;283:14636–44.PubMedCrossRefGoogle Scholar
  70. 70.
    Zakkar M, Van der Heiden K, Luong LA, et al. Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol. 2009;29:1851–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Brown JD, Plutzky J. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation. 2007;115(4):518–33.PubMedCrossRefGoogle Scholar
  72. 72.
    Riserus U, Sprecher D, Johnson T, et al. Activation of peroxisome proliferator-activated receptor (PPAR)δ promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes. 2008;57(2):332–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Hamblin M, Chang L, Fan Y, Zhang J, Chen YE. PPARs and the cardiovascular system. Antioxid Redox Signal. 2009;11(6):1415–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Liu Y, Zhu Y, Rannou F, et al. Laminar flow activates peroxisome proliferator-activated ­receptor-gamma in vascular endothelial cells. Circulation. 2004;110(9):1128–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Tsai MC, Chen L, Zhou J, et al. Shear stress induces synthetic-to-contractile phenotypic modulation in smooth muscle cells via peroxisome proliferator-activated receptor alpha/delta activations by prostacyclin released by sheared endothelial cells. Circ Res. 2009;105(5):471–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Fan Y, Wang Y, Tang Z, et al. Suppression of pro-inflammatory adhesion molecules by PPAR-δ in human vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28:315–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Barish GD, Atkins AR, Downes M, et al. PPARδ regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc Natl Acad Sci USA. 2008;105(11):4271–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Ali F, Ali NS, Bauer A, et al. PPARδ and PGC1α act cooperatively to induce haem oxygenase-1 and enhance vascular endothelial cell resistance to stress. Cardiovasc Res. 2010;85(4):701–10.PubMedCrossRefGoogle Scholar
  79. 79.
    Group HPCS. MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7–22.CrossRefGoogle Scholar
  80. 80.
    Landmesser U, Bahlmann F, Mueller M, et al. Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation. 2005;111:2356–63.PubMedCrossRefGoogle Scholar
  81. 81.
    Greenwood J, Mason JC. Statins and the vascular endothelial inflammatory response. Trends Immunol. 2007;28:88–98.PubMedCrossRefGoogle Scholar
  82. 82.
    Mason JC. Statins and their role in vascular protection. Clin Sci (Lond). 2003;105:251–66.CrossRefGoogle Scholar
  83. 83.
    Liu PY, Liu YW, Lin LJ, Chen JH, Liao JK. Evidence for statin pleiotropy in humans: differential effects of statins and ezetimibe on rho-associated coiled-coil containing protein kinase activity, endothelial function, and inflammation. Circulation. 2009;119(1):131–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Endres M, Laufs U, Huang Z, et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. PNAS. 1998;95(15):8880–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Bourcier T, Libby P. HMG CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20(2):556–62.PubMedCrossRefGoogle Scholar
  86. 86.
    Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator. Nat Med. 2000;6(12):1399–402.PubMedCrossRefGoogle Scholar
  87. 87.
    Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M. Improvement of nitric oxide-­dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol. 2000;20(1):61–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Mason JC, Ahmed Z, Mankoff R, et al. Statin-induced expression of decay-accelerating factor protects vascular endothelium against complement-mediated injury. Circ Res. 2002;91:696–703.PubMedCrossRefGoogle Scholar
  89. 89.
    Hancock WW, Buelow R, Sayegh MH, Turka LA. Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nat Med. 1998;4(12):1392–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Cheng C, Noordeloos AM, Jeney V, et al. Heme oxygenase-1 determines atherosclerotic lesion progression into a vulnerable plaque. Circulation. 2009;119(23):3017–27.PubMedCrossRefGoogle Scholar
  91. 91.
    Fujita T, Toda K, Karimova A, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med. 2001;7(5):598–604.PubMedCrossRefGoogle Scholar
  92. 92.
    Otterbein LE, Zuckerbraun BS, Haga M, et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med. 2003;9(2):183–90.PubMedCrossRefGoogle Scholar
  93. 93.
    Lee TS, Chang CC, Zhu Y, Shyy JY. Simvastatin induces heme oxygenase-1: a novel mechanism of vessel protection. Circulation. 2004;110(10):1296–302.PubMedCrossRefGoogle Scholar
  94. 94.
    Hamdulay SS, Wang B, Birdsey GM, et al. Celecoxib activates PI-3 K/Akt and mitochondrial redox signaling to enhance heme oxygenase-1-mediated anti-inflammatory activity in vascular endothelium. Free Radic Biol Med. 2010;48(8):1013–23. 2010 Jan 18.PubMedCrossRefGoogle Scholar
  95. 95.
    Visner GA, Lu F, Zhou H, Liu J, Kazemfar K, Agarwal A. Rapamycin induces heme ­oxygenase-1 in human pulmonary vascular cells: implications in the antiproliferative response to rapamycin. Circulation. 2003;107:911–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Wu BJ, Kathir K, Witting PK, et al. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med. 2006;203:1117–27.PubMedCrossRefGoogle Scholar
  97. 97.
    Kronke G, Kadl A, Ikonomu E, et al. Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol. 2007;27:1276–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Bywaters Centre for Vascular Inflammation, National Heart and Lung InstituteImperial College London, Hammersmith HospitalLondonUK

Personalised recommendations