Skip to main content

Cytoprotective Mechanisms in the Vasculature

  • Chapter
  • First Online:
Translational Vascular Medicine
  • 589 Accesses

Abstract

Vascular endothelial injury predisposes to apoptosis, endothelial dysfunction, and atherogenesis. This process may be accelerated in systemic inflammatory diseases such as systemic lupus erythematosus, in diabetes mellitus, chronic renal failure, and post-transplantation. The endothelium has a variety of innate cytoprotective mechanisms aimed at minimizing injury and facilitating repair. These mechanisms may be regulated by both endogenous and exogenous mediators and importantly by patterns of shear stress exerted by the flowing blood. These in turn activate cytoprotective genes such as heme oxygenase-1, endothelial nitric oxide synthase, and B cell lymphoma protein-2. A detailed knowledge of cytoprotective mechanisms and their associated signaling pathways may reveal novel therapeutic targets. These have the potential to provide the means by which the vascular endothelium can be protected against injury, so preventing or retarding accelerated atherogenesis in a variety of disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23(2):168–75.

    Article  PubMed  CAS  Google Scholar 

  2. Lerman A. Restenosis: another “dysfunction” of the endothelium. Circulation. 2005;111:8–10.

    Article  PubMed  Google Scholar 

  3. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.

    Article  PubMed  CAS  Google Scholar 

  4. Stoneman VE, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci. 2004;107:343–54.

    Article  PubMed  CAS  Google Scholar 

  5. Tedgui A, Mallat Z. Anti-inflammatory mechanisms in the vascular wall. Circ Res. 2001;88:877–87.

    Article  PubMed  CAS  Google Scholar 

  6. Sattar N, McCarey DW, Capell H, McInnes IB. Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation. 2003;108(24):2957–63.

    Article  PubMed  Google Scholar 

  7. del Rincon ID, Williams K, Stern MP, Freeman GL, Escalante A. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 2001;44(12):2737–45.

    Article  PubMed  Google Scholar 

  8. Esdaile JM, Abrahamowicz M, Grodzicky T, et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 2001;44:2331–7.

    Article  PubMed  CAS  Google Scholar 

  9. El-Magadmi M, Bodill H, Ahmad Y, et al. Systemic lupus erythematosus: an independent risk factor for endothelial dysfunction in women. Circulation. 2004;110(4):399–404.

    Article  PubMed  Google Scholar 

  10. Recio-Mayoral A, Mason JC, Kaski JC, Rubens MB, Harari OA, Camici PG. Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur Heart J. 2009;30:1837–43.

    Article  PubMed  CAS  Google Scholar 

  11. Keenan NG, Mason JC, Maceira A, et al. Integrated cardiac and vascular assessment in Takayasu arteritis by cardiovascular magnetic resonance. Arthritis Rheum. 2009;60(11):3501–9.

    Article  PubMed  Google Scholar 

  12. Choi HK, Hernan MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet. 2002;359(9313):1173–7.

    Article  PubMed  CAS  Google Scholar 

  13. Romero F, Rodriguez-Iturbe B, Pons H, et al. Mycophenolate mofetil treatment reduces ­cholesterol-induced atherosclerosis in the rabbit. Atherosclerosis. 2000;152(1):127–33.

    Article  PubMed  CAS  Google Scholar 

  14. Dixon WG, Watson KD, Lunt M, Hyrich KL, Silman AJ, Symmons DP. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 2007;56(9):2905–12.

    Article  PubMed  CAS  Google Scholar 

  15. Hermann F, Forster A, Chenevard R, et al. Simvastatin improves endothelial function in patients with rheumatoid arthritis. J Am Coll Cardiol. 2005;45:461–4.

    Article  PubMed  CAS  Google Scholar 

  16. Flammer AJ, Sudano I, Hermann F, et al. Angiotensin-converting enzyme inhibition improves vascular function in rheumatoid arthritis. Circulation. 2008;117:2262–9.

    Article  PubMed  CAS  Google Scholar 

  17. Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med. 2003;348(25):2583–4.

    Article  PubMed  Google Scholar 

  18. Feldmann M, Maini SR. Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics. Immunol Rev. 2008;223:7–19.

    Article  PubMed  CAS  Google Scholar 

  19. Elhage R, Maret A, Pieraggi MT, Thiers JC, Arnal JF, Bayard F. Differential effects of ­interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation. 1998;97(3):242–4.

    PubMed  CAS  Google Scholar 

  20. Francis SE, Camp NJ, Dewberry RM, et al. Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease. Circulation. 1999;99(7):861–6.

    PubMed  CAS  Google Scholar 

  21. Philippidis P, Mason JC, Evans BJ, et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res. 2004;94:119–26.

    Article  PubMed  CAS  Google Scholar 

  22. Henke PK, DeBrunye LA, Strieter RM, et al. Viral IL-10 gene transfer decreases inflammation and cell adhesion molecule expression in a rat model of venous thrombosis. J Immunol. 2000;164(4):2131–41.

    PubMed  CAS  Google Scholar 

  23. Karsan A, Yee E, Poirier GG, Zhou P, Craig R, Harlan JM. Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms. Am J Pathol. 1997;151(6):1775–84.

    PubMed  CAS  Google Scholar 

  24. Mason JC, Lidington EA, Ahmad SR, Haskard DO. bFGF and VEGF synergistically enhance endothelial cytoprotection via decay-accelerating factor upregulation. Am J Physiol Cell Physiol. 2002;282:C578–87.

    PubMed  CAS  Google Scholar 

  25. Pendurthi UR, Williams JT, Rao LV. Acidic and basic fibroblast growth factors suppress transcriptional activation of tissue factor and other inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol. 1997;17(5):940–6.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang H, Issekutz AC. Down-modulation of monocyte transendothelial migration and endothelial adhesion molecule expression by fibroblast growth factor: reversal by the anti-angiogenic agent SU6668. Am J Pathol. 2002;160:2219–30.

    Article  PubMed  CAS  Google Scholar 

  27. Gaengel K, Genove G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(5):630–8.

    Article  PubMed  CAS  Google Scholar 

  28. Brindle NP, Saharinen P, Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res. 2006;98(8):1014–23.

    Article  PubMed  CAS  Google Scholar 

  29. Mason JC, Steinberg R, Lidington EA, Kinderlerer AR, Ohba M, Haskard DO. Decay-accelerating factor induction on vascular endothelium by VEGF is mediated via a VEGF-R2 and PKCα/ε-dependent cytoprotective signaling pathway and is inhibited by cyclosporin A. J Biol Chem. 2004;279:41611–8.

    Article  PubMed  CAS  Google Scholar 

  30. Steinberg R, Harari OA, Lidington EA, et al. A PKCε/Akt signalling complex protects human vascular endothelial cells against apoptosis through induction of Bcl-2. J Biol Chem. 2007;282:32288–97.

    Article  PubMed  CAS  Google Scholar 

  31. Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30(8):383–91.

    Article  PubMed  CAS  Google Scholar 

  32. Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000;289(5488):2350–4.

    Article  PubMed  CAS  Google Scholar 

  33. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9(1):47–59.

    Article  PubMed  CAS  Google Scholar 

  34. Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM. The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol. 2001;166:3231–9.

    PubMed  CAS  Google Scholar 

  35. Mason JC, Yarwood H, Sugars K, Morgan BP, Davies KA, Haskard DO. Induction of decay-accelerating factor by cytokines or the membrane-attack complex protects vascular endothelial cells against complement deposition. Blood. 1999;94:1673–82.

    PubMed  CAS  Google Scholar 

  36. Kinderlerer AR, Steinberg R, Johns M, et al. Statin-induced expression of CD59 on vascular endothelium in hypoxia. A potential mechanism for the anti-inflammatory actions of statins in rheumatoid arthritis. Arthritis Res Ther. 2006;8:R130–41.

    Article  PubMed  Google Scholar 

  37. Lidington EA, Haskard DO, Mason JC. Induction of decay-accelerating factor by thrombin through a protease-activated receptor1 and protein kinase C-dependent pathway protects vascular endothelial cells from complement-mediated injury. Blood. 2000;96:2784–92.

    PubMed  CAS  Google Scholar 

  38. Ahmad SR, Lidington EA, Ohta R, et al. Decay-accelerating factor induction by TNFα through a phosphatidylinositol-3 kinase and protein kinase C-dependent pathway protects murine vascular endothelial cells against complement deposition. Immunology. 2003;110:258–68.

    Article  PubMed  CAS  Google Scholar 

  39. Leung VWY, Yun S, Botto M, et al. Decay-accelerating factor suppresses complement C3 activation and retards atherosclerosis in low density lipoprotein receptor deficient mice. Am J Pathol. 2009;175:1757–67.

    Article  PubMed  CAS  Google Scholar 

  40. Yun S, Leung V, Botto M, Boyle J, Haskard D. Accelerated atherosclerosis in low-density lipoprotein receptor-deficient mice lacking the membrane-bound complement regulator CD59. Arterioscler Thromb Vasc Biol. 2008;28:1714–6.

    Article  PubMed  CAS  Google Scholar 

  41. Wu G, Hu W, Shahsafaei A, et al. Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex. Circ Res. 2009;104(4):550–8.

    Article  PubMed  CAS  Google Scholar 

  42. Lee S, Chen TT, Barber CL, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell. 2007;130(4):691–703.

    Article  PubMed  CAS  Google Scholar 

  43. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol. 2006;7:359–71.

    Article  PubMed  CAS  Google Scholar 

  44. Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem. 1998;273:13313–6.

    Article  PubMed  CAS  Google Scholar 

  45. He H, Venema VJ, Guo XL, Venema RC, Marrero MB, Caldwell RB. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through Flk-1/KDR activation of c-Src. J Biol Chem. 1999;274:25130–5.

    Article  PubMed  CAS  Google Scholar 

  46. Bussolati B, Ahmed A, Pemberton H, et al. Bifunctional role for VEGF-induced heme oxygenase-1 in vivo: induction of angiogenesis and inhibition of leukocytic infiltration. Blood. 2004;103:761–6.

    Article  PubMed  CAS  Google Scholar 

  47. Mason JC, Lidington EA, Yarwood H, Lublin DM, Haskard DO. Induction of endothelial cell decay-accelerating factor by vascular endothelial growth factor – a mechanism for cytoprotection against complement-mediated injury during inflammatory angiogenesis. Arthritis Rheum. 2001;44:138–50.

    Article  PubMed  CAS  Google Scholar 

  48. Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358:1129–36.

    Article  PubMed  CAS  Google Scholar 

  49. Hurwitz H, Saini S. Bevacizumab in the treatment of metastatic colorectal cancer: safety profile and management of adverse events. Semin Oncol. 2006;33(5 Suppl 10):S26–34.

    Article  PubMed  CAS  Google Scholar 

  50. Loboda A, Jazwa A, Grochot-Przeczek A, et al. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2008;10:1767–812.

    Article  PubMed  CAS  Google Scholar 

  51. Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.

    Article  PubMed  CAS  Google Scholar 

  52. Yachie A, Niida Y, Wada T, et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999;103(1):129–35.

    Article  PubMed  CAS  Google Scholar 

  53. Kinderlerer AR, Gregoire IP, Hamdulay SS, et al. Heme-oxygenase-1 expression enhances vascular endothelial resistance to complement-mediated injury through induction of decay-accelerating factor. A role for bilirubin and ferritin. Blood. 2009;113:1598–607.

    Article  PubMed  CAS  Google Scholar 

  54. Soares MP, Lin Y, Anrather J, et al. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med. 1998;4(9):1073–7.

    Article  PubMed  CAS  Google Scholar 

  55. Wehner J, Morrell CN, Reynolds T, Rodriguez ER, Baldwin 3rd WM. Antibody and complement in transplant vasculopathy. Circ Res. 2007;100(2):191–203.

    Article  PubMed  CAS  Google Scholar 

  56. Soares MP, Bach FH. Heme oxygenase-1 in organ transplantation. Front Biosci. 2007;12:4932–45.

    Article  PubMed  CAS  Google Scholar 

  57. Berk BC. Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation. 2008;117(8):1082–9.

    Article  PubMed  Google Scholar 

  58. Dimmeler S, Hermann C, Galle J, Zeiher AM. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol. 1999;19:656–64.

    Article  PubMed  CAS  Google Scholar 

  59. Sheikh S, Rainger G, Gale Z, Rahman M, Nash G. Exposure to fluid shear stress modulates the ability of endothelial cells to recruit neutrophils in response to tumor necrosis factor -alpha: a basis for local variations in vascular sensitivity to inflammation. Blood. 2003;102:2828–34.

    Article  PubMed  CAS  Google Scholar 

  60. Dekker RJ, van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood. 2002;100(5):1689–98.

    Article  PubMed  CAS  Google Scholar 

  61. SenBanerjee S, Lin Z, Atkins GB, et al. KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 2004;199:1305–15.

    Article  PubMed  CAS  Google Scholar 

  62. Parmar KM, Larman HB, Dai G, et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest. 2006;116:49–58.

    Article  PubMed  CAS  Google Scholar 

  63. Ali F, Hamdulay SS, Kinderlerer AR, et al. Statin-mediated cytoprotection of human vascular endothelial cells: a role for Kruppel-like factor 2-dependent induction of heme oxygenase-1. J Thromb Haemost. 2007;5:2537–46.

    Article  PubMed  CAS  Google Scholar 

  64. Parmar KM, Nambudiri V, Dai G, Larman HB, Gimbrone Jr MA, Garcia-Cardena G. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J Biol Chem. 2005;280(29):26714–9.

    Article  PubMed  CAS  Google Scholar 

  65. Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. 2007;282(18):13769–79.

    Article  PubMed  CAS  Google Scholar 

  66. Villarreal Jr G, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, Garcia-Cardena G. Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun. 2010;391(1):984–9.

    Article  PubMed  CAS  Google Scholar 

  67. Dai G, Vaughn S, Zhang Y, Wang ET, Garcia-Cardena G, Gimbrone Jr MA. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ Res. 2007;101(7):723–33.

    Article  PubMed  CAS  Google Scholar 

  68. Ali F, Zakkar M, Karu K, et al. Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress. J Biol Chem. 2009;284:18882–92.

    Article  PubMed  CAS  Google Scholar 

  69. Kinderlerer AR, Ali F, Johns M, et al. KLF-2-dependent, shear stress-induced expression of CD59: a novel cytoprotective mechanism against complement-mediated injury in the vascu­lature. J Biol Chem. 2008;283:14636–44.

    Article  PubMed  CAS  Google Scholar 

  70. Zakkar M, Van der Heiden K, Luong LA, et al. Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol. 2009;29:1851–7.

    Article  PubMed  CAS  Google Scholar 

  71. Brown JD, Plutzky J. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation. 2007;115(4):518–33.

    Article  PubMed  CAS  Google Scholar 

  72. Riserus U, Sprecher D, Johnson T, et al. Activation of peroxisome proliferator-activated receptor (PPAR)δ promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes. 2008;57(2):332–9.

    Article  PubMed  CAS  Google Scholar 

  73. Hamblin M, Chang L, Fan Y, Zhang J, Chen YE. PPARs and the cardiovascular system. Antioxid Redox Signal. 2009;11(6):1415–52.

    Article  PubMed  CAS  Google Scholar 

  74. Liu Y, Zhu Y, Rannou F, et al. Laminar flow activates peroxisome proliferator-activated ­receptor-gamma in vascular endothelial cells. Circulation. 2004;110(9):1128–33.

    Article  PubMed  CAS  Google Scholar 

  75. Tsai MC, Chen L, Zhou J, et al. Shear stress induces synthetic-to-contractile phenotypic modulation in smooth muscle cells via peroxisome proliferator-activated receptor alpha/delta activations by prostacyclin released by sheared endothelial cells. Circ Res. 2009;105(5):471–80.

    Article  PubMed  CAS  Google Scholar 

  76. Fan Y, Wang Y, Tang Z, et al. Suppression of pro-inflammatory adhesion molecules by PPAR-δ in human vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28:315–21.

    Article  PubMed  CAS  Google Scholar 

  77. Barish GD, Atkins AR, Downes M, et al. PPARδ regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc Natl Acad Sci USA. 2008;105(11):4271–6.

    Article  PubMed  CAS  Google Scholar 

  78. Ali F, Ali NS, Bauer A, et al. PPARδ and PGC1α act cooperatively to induce haem oxygenase-1 and enhance vascular endothelial cell resistance to stress. Cardiovasc Res. 2010;85(4):701–10.

    Article  PubMed  CAS  Google Scholar 

  79. Group HPCS. MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7–22.

    Article  Google Scholar 

  80. Landmesser U, Bahlmann F, Mueller M, et al. Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation. 2005;111:2356–63.

    Article  PubMed  CAS  Google Scholar 

  81. Greenwood J, Mason JC. Statins and the vascular endothelial inflammatory response. Trends Immunol. 2007;28:88–98.

    Article  PubMed  CAS  Google Scholar 

  82. Mason JC. Statins and their role in vascular protection. Clin Sci (Lond). 2003;105:251–66.

    Article  CAS  Google Scholar 

  83. Liu PY, Liu YW, Lin LJ, Chen JH, Liao JK. Evidence for statin pleiotropy in humans: differential effects of statins and ezetimibe on rho-associated coiled-coil containing protein kinase activity, endothelial function, and inflammation. Circulation. 2009;119(1):131–8.

    Article  PubMed  CAS  Google Scholar 

  84. Endres M, Laufs U, Huang Z, et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. PNAS. 1998;95(15):8880–5.

    Article  PubMed  CAS  Google Scholar 

  85. Bourcier T, Libby P. HMG CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20(2):556–62.

    Article  PubMed  CAS  Google Scholar 

  86. Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator. Nat Med. 2000;6(12):1399–402.

    Article  PubMed  CAS  Google Scholar 

  87. Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M. Improvement of nitric oxide-­dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol. 2000;20(1):61–9.

    Article  PubMed  CAS  Google Scholar 

  88. Mason JC, Ahmed Z, Mankoff R, et al. Statin-induced expression of decay-accelerating factor protects vascular endothelium against complement-mediated injury. Circ Res. 2002;91:696–703.

    Article  PubMed  CAS  Google Scholar 

  89. Hancock WW, Buelow R, Sayegh MH, Turka LA. Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nat Med. 1998;4(12):1392–6.

    Article  PubMed  CAS  Google Scholar 

  90. Cheng C, Noordeloos AM, Jeney V, et al. Heme oxygenase-1 determines atherosclerotic lesion progression into a vulnerable plaque. Circulation. 2009;119(23):3017–27.

    Article  PubMed  CAS  Google Scholar 

  91. Fujita T, Toda K, Karimova A, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med. 2001;7(5):598–604.

    Article  PubMed  CAS  Google Scholar 

  92. Otterbein LE, Zuckerbraun BS, Haga M, et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med. 2003;9(2):183–90.

    Article  PubMed  CAS  Google Scholar 

  93. Lee TS, Chang CC, Zhu Y, Shyy JY. Simvastatin induces heme oxygenase-1: a novel mechanism of vessel protection. Circulation. 2004;110(10):1296–302.

    Article  PubMed  CAS  Google Scholar 

  94. Hamdulay SS, Wang B, Birdsey GM, et al. Celecoxib activates PI-3 K/Akt and mitochondrial redox signaling to enhance heme oxygenase-1-mediated anti-inflammatory activity in vascular endothelium. Free Radic Biol Med. 2010;48(8):1013–23. 2010 Jan 18.

    Article  PubMed  CAS  Google Scholar 

  95. Visner GA, Lu F, Zhou H, Liu J, Kazemfar K, Agarwal A. Rapamycin induces heme ­oxygenase-1 in human pulmonary vascular cells: implications in the antiproliferative response to rapamycin. Circulation. 2003;107:911–6.

    Article  PubMed  CAS  Google Scholar 

  96. Wu BJ, Kathir K, Witting PK, et al. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med. 2006;203:1117–27.

    Article  PubMed  CAS  Google Scholar 

  97. Kronke G, Kadl A, Ikonomu E, et al. Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol. 2007;27:1276–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin C. Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mason, J.C. (2012). Cytoprotective Mechanisms in the Vasculature. In: Abraham, D., Handler, C., Dashwood, M., Coghlan, G. (eds) Translational Vascular Medicine. Springer, London. https://doi.org/10.1007/978-0-85729-920-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-920-8_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-919-2

  • Online ISBN: 978-0-85729-920-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics