Integrated Control of Solar Systems

  • Eduardo F. Camacho
  • Manuel Berenguel
  • Francisco R. Rubio
  • Diego Martínez
Part of the Advances in Industrial Control book series (AIC)


This chapter deals with the upper control level of solar power plants. Models for predicting solar irradiance and electrical loads, as well as models of the energy storage systems and power conversion systems, are needed to generate optimal operating modes and the corresponding set points, which are then sent to the lower level controllers.

Basic concepts involved in the operational planning of a solar plant with PTC are treated in this chapter. Different levels of the hierarchical control problem involved have been defined within time scales of weekly planning, daily planning and tracking. Many static and dynamic models are required to fulfill the operational planning objectives: solar irradiance, ambient temperature, market, electrical prices, costs, solar field, storage systems and power conversion systems. Both committed and non-committed production cases have been studied from an optimization viewpoint and several illustrative simulation results have been provided.


Storage Tank Solar Irradiance Steam Generator Electrical Demand Simultaneous Perturbation Stochastic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 19.
    Arahal, M.R., Cirre, C.M., Berenguel, M.: Serial grey-box model of a stratified thermal tank for hierarchical control of a solar plant. Sol. Energy 82, 441–451 (2008) CrossRefGoogle Scholar
  2. 103.
    Cirre, C.M.: Hierarchical control of the energy production using distributed solar collectors. PhD Thesis, University of Almería, Spain (2007) (in Spanish) Google Scholar
  3. 144.
    Fosso, O.B., Gjelsvik, A., Haugstad, A., Mo, B., Wangensteen, I.: Generation scheduling in a deregulated system. The Norwegian case. IEEE Trans. Power Syst. 14(1), 75–81 (1999) CrossRefGoogle Scholar
  4. 190.
    ITET: The IEA/SSPS Solar Thermal Power Plants, vol. 2. Springer, Berlin (1986) Google Scholar
  5. 230.
    Ljung, L.: System Identification, Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999) Google Scholar
  6. 356.
    Spall, J.C.: Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst. 34(3), 817–823 (1998) CrossRefGoogle Scholar
  7. 416.
    Zarza, E., Valenzuela, L., León, J., Hennecke, K., Eck, M., Weyers, H.D., Eickhoff, M.: The DISS project: direct steam generation in parabolic troughs. Operation and maintenance experience & update on project status. In: Proc. of ASME Int. Solar Energy Conf.: Forum 2001, Washington, DC, USA, 2001 Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Eduardo F. Camacho
    • 1
  • Manuel Berenguel
    • 2
  • Francisco R. Rubio
    • 1
  • Diego Martínez
    • 3
  1. 1.Departamento de Ingeniería de Sistemas y Automática, Escuela Superior de IngenierosUniversidad de SevillaSevilleSpain
  2. 2.Departamento de Lenguajes y Computación, Escuela Superior de IngenieríaUniversidad de AlmeríaAlmeríaSpain
  3. 3.Plataforma Solar de Almería, Centro Europeo de Ensayos de Energía SolarCIEMATTabernasSpain

Personalised recommendations