Other Solar Applications

  • Eduardo F. Camacho
  • Manuel Berenguel
  • Francisco R. Rubio
  • Diego Martínez
Part of the Advances in Industrial Control book series (AIC)


This chapter describes the main control strategies used for two of the most promising fields for solar energy: solar furnaces for material testing and treatment and solar-based refrigeration systems.

A solar furnace is a highly concentrating facility made up of a collector system with tracking (usually with a varying number of flat-faceted heliostats) and a static parabolic concentrating system at the focal spot of which a high percentage of the solar energy collected by the collector system is concentrated within a small area. One attenuator (shutter) can be used between the collector system and the concentrator to control the amount of energy used for heating samples placed at the focal spot. A test table, movable in three dimensions, is placed in the area of the focal spot within the test zone.

Air conditioning consumes a lot of electrical energy. An important factor of conditioning systems is the relationship between solar irradiance and the ambient temperature and the refrigeration demand (related to temperature). Most people use their air conditioning units when it is hot, and this high ambient temperature usually occurs together with high solar radiation during daytime. In a passive solar energy system such as solar collectors, solar radiation is the main energy source, and it is therefore, appropriate as the energy source for a cooling system. Among the multiple methods existing for refrigeration using solar radiation, one of the most successful is based on an absorption machine which produces cold water at the output from hot water previously heated by the Sun at the input. This chapter describes the main strategies used to control solar refrigeration systems.


Solar Irradiance Solar Collector Fuzzy Logic Control Solar Furnace Characteristic Time Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 2.
    Alexander, B., Balluffi, R.: The mechanism of sintering of copper. Acta Metall. 5, 667–677 (1957) Google Scholar
  2. 5.
    Almeida, F., Shohoji, N., Cruz, J., Guerra, L.: Solar sintering of cordierite-based ceramics at low temperatures. Sol. Energy 78, 351–361 (2005) CrossRefGoogle Scholar
  3. 13.
    Andrade da Costa, B., Lemos, J.M.: An adaptive temperature control law for a solar furnace. Control Eng. Pract. 17, 1157–1173 (2009) CrossRefGoogle Scholar
  4. 21.
    Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design and Tuning. Instrument Society of America, Research Triangle Park (1995) Google Scholar
  5. 22.
    Åström, K.J., Hägglund, T.: PID control. In: Levine, S. (ed.) The Control Handbook. CRC Press/IEEE Press, Boca Raton/New York (1996) Google Scholar
  6. 24.
    Åström, K.J., Wittenmark, B.: Computer Controlled Systems. Theory and Design. Prentice Hall, New York (1984) Google Scholar
  7. 25.
    Åström, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading (1989) MATHGoogle Scholar
  8. 26.
    Balas, G., Doyle, J., Glover, K., Packard, A., Smith, R.: μ-Analysis and Synthesis Toolbox User’s Guide, 2nd edn. The Mathworks, Natick (1995) Google Scholar
  9. 33.
    Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics and constraints. Automatica 35(3), 407–427 (1999) CrossRefMATHMathSciNetGoogle Scholar
  10. 43.
    Berenguel, M., Camacho, E.F., García-Martín, F., Rubio, F.R.: Temperature control of a solar furnace. IEEE Control Syst. Mag. 19(1), 8–24 (1999) CrossRefGoogle Scholar
  11. 44.
    Berenguel, M., Rubio, F.R., Camacho, E.F., Gordillo, F.: Techniques and applications of fuzzy logic control of solar power plants. In: Leondes, C.T. (ed.) Fuzzy Theory Systems Techniques and Applications, vol. 2. Academic Press, San Diego (1999) (Chap. 25) Google Scholar
  12. 48.
    Beschi, M., Berenguel, M., Visioli, A., Yebra, L.: Control strategies for disturbance rejection in a solar furnace. In: Proc. of the 18th IFAC World Congress, Milan, Italy, 2011 Google Scholar
  13. 82.
    Camacho, E.F., Rubio, F.R., Hughes, F.M.: Self-tuning control of a solar power plant with a distributed collector field. IEEE Control Syst. Mag., 72–78 (1992) Google Scholar
  14. 83.
    Camacho, E.F., Berenguel, M., Bordóns, C.: Adaptive generalized predictive control of a distributed collector field. IEEE Trans. Control Syst. Technol. 2(4), 462–467 (1994) CrossRefGoogle Scholar
  15. 85.
    Camacho, E.F., Berenguel, M., Rubio, F.R.: Advanced Control of Solar Plants. Springer, Berlin (1997) CrossRefGoogle Scholar
  16. 119.
    Corchero, M.A., Ortega, M.G., Rubio, F.R.: Robust H control applied to a solar plant. In: Proc. of the 16th IFAC World Congress, Prague, Czech Republic, 2005 Google Scholar
  17. 120.
    Costa, B.A., Lemos, J.M., Guillot, E., Olalde, G., Rosa, L.G., Fernandes, J.C.: An adaptive temperature control law for a solar furnace. In: MED08, 16th Mediterranean Conf. on Control and Automation, Ajaccio, France, 2008 Google Scholar
  18. 121.
    Costa, B.A., Lemos, J.M., Guillot, E., Olalde, G., Rosa, L.G., Fernandes, J.C.: Temperature control of a solar furnace for material testing. In: CONTROLO’08, 8th Portuguese Conf. on Automatic Control, Vila Real, Portugal, 2008 Google Scholar
  19. 140.
    Fernández-Reche, J., Cañadas, I., Sánchez, M., Ballestrín, J., Yebra, L., Monterreal, R., Rodríguez, J., García, G., Alonso, M., Chenlo, F.: PSA solar furnace: a facility for testing PV cells under concentrated solar radiation. Sol. Energy Mater. Sol. Cells 90, 2480–2488 (2006) CrossRefGoogle Scholar
  20. 141.
    Flamant, G., Ferriere, A., Laplaze, D., Monty, C.: Solar processing of materials: opportunities and new frontiers. Sol. Energy 66(2), 117–132 (1999) CrossRefGoogle Scholar
  21. 148.
    Garcia-Gabin, W., Zambrano, D., Camacho, E.F.: Sliding mode predictive control of a solar air conditioning plant. Control Eng. Pract. 17(6), 652–663 (2009) CrossRefGoogle Scholar
  22. 151.
    German, R.M.: Sintering Theory and Practice. Wiley, New York (1996) Google Scholar
  23. 157.
    Giral, J., Rivoire, B., Robert, J.F.: A new advanced control and operating system for the heliostats of the French CNRS’1000 KW Solar Furnace. In: Proc. of the 8th Int. Symp. on Solar Thermal Concentrating Technologies, Cologne, Germany, vol. 2, pp. 1592–1608 (1996) Google Scholar
  24. 158.
    Glaser, P.E.: A solar furnace for use in applied research. Sol. Energy 1(2–3), 63–67 (1957) CrossRefGoogle Scholar
  25. 205.
    Kalogirou, S.A.: Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30, 231–295 (2004) CrossRefGoogle Scholar
  26. 212.
    Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to Ceramics, 2nd edn. Wiley, New York (1996) Google Scholar
  27. 220.
    Lacasa, D., Berenguel, M., Cañadas, I., Yebra, L.: Modelling the thermal process of copper sintering in a solar furnace. In: Proc. of the 13th Solarpaces Int. Symp., Seville, Spain, pp. 2–9 (2006) Google Scholar
  28. 221.
    Lacasa, D., Berenguel, M., Yebra, L., Martínez, D.: Copper sintering in a solar furnace through fuzzy control. In: Proc. of the 2006 IEEE Int. Conf. on Control Applications, Munich, Germany, pp. 2144–2149 (2006) CrossRefGoogle Scholar
  29. 229.
    Ljung, L.: System Identification Toolbox. The Mathworks, Natick (1986) Google Scholar
  30. 240.
    Martínez, D.: Solar furnace technologies. In: Solar Thermal Test Facilities. CIEMAT, Madrid (1996) Google Scholar
  31. 251.
    Menchinelli, P., Bemporad, A.: Hybrid model predictive control of a solar–air conditioning plant. Eur. J. Control 14(6), 501–515 (2008) CrossRefGoogle Scholar
  32. 265.
    Neumann, A., Groer, U.: Experimenting with concentrated sunlight using the DLR solar furnace. Sol. Energy 58(4-6), 181–190 (1996) CrossRefGoogle Scholar
  33. 275.
    Nuñez-Reyes, A., Normey-Rico, J.E., Bordóns, C., Camacho, E.F.: A Smith predictive based MPC in a solar air conditioning plant. J. Process Control 15, 1–10 (2005) CrossRefGoogle Scholar
  34. 281.
    Ortega, M.G., Rubio, F.R.: Systematic design of weighting matrices for H mixed sensitivity problem. J. Process Control 14(1), 89–98 (2004) CrossRefGoogle Scholar
  35. 284.
    Pasamontes, M., Álvarez, J.D., Guzmán, J.L., Berenguel, M.: Hybrid modeling of a solar cooling system. In: Proc. of the 3rd IFAC Conf. on Analysis and Design of Hybrid Systems, Zaragoza, Spain, 2009 Google Scholar
  36. 285.
    Pasamontes, M., Álvarez, J.D., Guzmán, J.L., Lemos, J.M., Berenguel, M.: A switching control strategy applied to a solar collector field. Control Eng. Pract. 19, 135–145 (2011) CrossRefGoogle Scholar
  37. 293.
    Petrasch, J., Osch, P., Steinfeld, A.: Dynamics and control of solar thermochemical reactors. Chem. Eng. J. 145, 362–370 (2009) CrossRefGoogle Scholar
  38. 302.
    Pitz-Paal, R.: High temperature solar concentrators. In: Gálvez, J.B., Rodríguez, S.M. (eds.) Solar Energy Conversion and Photoenergy Systems. EOLSS Publishers, Oxford (1999) Google Scholar
  39. 320.
    Rodríguez, D.P., López, V., Damborenea, J.J., Vázquez, A.J.: Surface transformation hardening on steels treated with solar energy in central tower and heliostats field. Sol. Energy Mater. Sol. Cells 37, 1–12 (1995) CrossRefGoogle Scholar
  40. 321.
    Rodríguez, J., Martínez, D., Shcheglov, V.: Materials treatments at the solar furnace of Plataforma Solar de Almería under EU’s DGXII HCM programme. In: Proc. of the 8th Int. Symp. on Solar Thermal Concentrating Technologies, Cologne, Germany, vol. 2, pp. 1592–1608 (1996) Google Scholar
  41. 322.
    Rodríguez, M., de Prada, C., Capraro, F., Cristea, S.: Logic embedded NMPC of a solar air conditioning plant. Eur. J. Control 14(6), 484–500 (2008) CrossRefGoogle Scholar
  42. 323.
    Rohsenow, W.M., Hartnett, J.P., Cho, Y.I.: Handbook of Heat Transfer, 3rd edn. McGraw-Hill, New York (1998) Google Scholar
  43. 335.
    Rubio, F.R., Ortega, M.G., Gordillo, F., López-Martinez, M.: Application of a new control strategy for Sun tracking. Energy Convers. Manag. 48, 2174–2184 (2007) CrossRefGoogle Scholar
  44. 338.
    Sayigh, A.M.: Solar Air Conditioning and Refrigeration. Pergamon, Elmsford (1992) Google Scholar
  45. 353.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control. Analysis and Design. Wiley, New York (1996) Google Scholar
  46. 355.
    Sonntag, C., Ding, H., Engell, S.: Supervisory control of a solar air conditioning plant with hybrid dynamics. Eur. J. Control 14(6), 451–463 (2008) CrossRefGoogle Scholar
  47. 367.
    Sudkamp, T., Hammell, R.J. II: Interpolation, completion, and learning fuzzy rules. IEEE Trans. Syst. Man Cybern. 24(2), 332–342 (1994) CrossRefGoogle Scholar
  48. 368.
    Suresh, D., Rohatgi, P.K.: Melting and casting of alloys in a solar furnace. Sol. Energy 23, 553–555 (1979) CrossRefGoogle Scholar
  49. 371.
    Thirugnanasambandam, M., Iniyan, S., Goic, R.: A review of solar thermal technologies. Renew. Sustain. Energy Rev. 14, 312–322 (1995) CrossRefGoogle Scholar
  50. 373.
    Torrisi, F.D., Bemporad, A.: HYSDEL—a tool for generating computational hybrid models for analysis and synthesis problems. IEEE Trans. Control Syst. Technol. 12(2), 235–249 (2004) CrossRefMathSciNetGoogle Scholar
  51. 375.
    Trombe, F.: Solar furnaces and their applications. Sol. Energy 1(2–3), 9–15 (1957) CrossRefGoogle Scholar
  52. 376.
    Tsuo, Y.S., Pitts, J.R., Landry, M.D., Bingham, C.E., Lewandowski, A., Ciszek, T.F.: High-flux solar furnace processing of silicon solar cells. In: Proc. of the 24th IEEE Photovoltaic Specialists Conf. on Photovoltaic Energy Conversion, Waikoloa, HI, USA, pp. 1307–1310 (1994) Google Scholar
  53. 394.
    Wang, Y.: Computer modeling and simulation of solid-state sintering: a phase field approach. Acta Mater. 54(4), 953–961 (2006) CrossRefGoogle Scholar
  54. 403.
    Yang, Y., Torrance, A.A., Rodriguez, J.: The solar hardening of steels: experiments and predictions. Sol. Energy Mater. Sol. Cells 40, 103–121 (1996) CrossRefGoogle Scholar
  55. 411.
    Zambrano, D., Garcia-Gabin, W.: Hierarchical control of a hybrid solar air conditioning plant. Eur. J. Control 14(6), 464–483 (2008) CrossRefGoogle Scholar
  56. 412.
    Zambrano, D., Bordóns, C., Garcia-Gabin, W., Camacho, E.F.: A solar cooling plant: a benchmark for hybrid systems control. In: The 2nd IFAC Conference on Analysis and Design of Hybrid Systems, pp. 199–204 (2006) Google Scholar
  57. 414.
    Zambrano, D., Garcia-Gabin, W., Camacho, E.F.: Application of a transition graph-based predictive algorithm to a solar air conditioning plant. IEEE Trans. Control Syst. Technol. 18(5), 1162–1171 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Eduardo F. Camacho
    • 1
  • Manuel Berenguel
    • 2
  • Francisco R. Rubio
    • 1
  • Diego Martínez
    • 3
  1. 1.Departamento de Ingeniería de Sistemas y Automática, Escuela Superior de IngenierosUniversidad de SevillaSevilleSpain
  2. 2.Departamento de Lenguajes y Computación, Escuela Superior de IngenieríaUniversidad de AlmeríaAlmeríaSpain
  3. 3.Plataforma Solar de Almería, Centro Europeo de Ensayos de Energía SolarCIEMATTabernasSpain

Personalised recommendations