Control of Central Receiver Systems

  • Eduardo F. Camacho
  • Manuel Berenguel
  • Francisco R. Rubio
  • Diego Martínez
Part of the Advances in Industrial Control book series (AIC)


This chapter deals with modeling and control problems associated to thermosolar plants with central receiver system. All the components of a typical installation are explained, including the collector subsystem, the receiver, storage and control system. The chapter next describes simulation models for the main subsystem. The heliostat offset correction problem is explained next and an automatic heliostat offset correction mechanism based on artificial vision is explained. The chapter introduces the beam characterization system and describes beam aiming strategies and a heuristic control scheme designed for obtaining a uniform heating of the receivers as well as the control of the power stage.

Illustrative examples of control solutions for the CESA-1 plant of the PSA are included. These algorithms have served as a reference for the industrial facilities that have been put into operation recently.


Solar Irradiance Steam Generator Flux Distribution Thermal Storage Rankine Cycle 


  1. 8.
    Álvarez, J.D., Yebra, L.J., Berenguel, M.: Repetitive control of tubular heat exchangers. J. Process Control 17(9), 689–701 (2007) CrossRefGoogle Scholar
  2. 9.
    Álvarez, J.D., Yebra, L.J., Berenguel, M.: Control Strategies for Thermosolar Heat Exchangers. CIEMAT, Madrid (2008) (in Spanish) Google Scholar
  3. 10.
    Álvarez, J.D., Guzmán, J.L., Yebra, L.J., Berenguel, M.: Hybrid modeling of central receiver solar power plants. Simul. Model. Pract. Theory 17(4), 664–679 (2009) CrossRefGoogle Scholar
  4. 32.
    Bemporad, A.: Hybrid Toolbox—User’s Guide. (2004)
  5. 33.
    Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics and constraints. Automatica 35(3), 407–427 (1999) CrossRefMATHMathSciNetGoogle Scholar
  6. 45.
    Berenguel, M., Rubio, F.R., Valverde, A., Lara, P.J., Arahal, M.R., Camacho, E.F., López, M.: An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant. Sol. Energy 76, 563–575 (2004) CrossRefGoogle Scholar
  7. 50.
    Biggs, F., Vittoe, C.N.: The Helios model for the optical behavior of reflecting solar concentrators. SAND 76-0347, Sandia National Laboratories, Albuquerque (1976) Google Scholar
  8. 51.
    Blackmon, J.B.: Development and performance of a digital image radiometer for heliostat evaluation at Solar One. In: Proc. of the ASME Solar Engineering Division 6th Annual Conf., Las Vegas, NV, USA, 1984 Google Scholar
  9. 52.
    Blackmon, J.B., Edwards, D.K.: Apparatus and method for calculation of shape factor. US Patent 4,963,025, 16 October 1990 Google Scholar
  10. 53.
    Blackmon, J.B., Stone, K.W.: Digital image system for determining relative position and motion of in-flight vehicles. US Patent 5,493,392, 20 February 1996 Google Scholar
  11. 54.
    Blackmon, J.B., Caraway, M.J., Stone, K.W.: Digital image radiometer applications for solar concentrator optical evaluation. In: Proc. of the ISES World Congress, Jerusalem, Israel, 1999 Google Scholar
  12. 56.
    Blanco-Muriel, M., Alarcón-Padilla, D.C., López-Moratalla, T., Lara-Coira, M.: Computing the solar vector. Sol. Energy 70(5), 431–441 (2001) CrossRefGoogle Scholar
  13. 58.
    Bonilla, J., Roca, L., González, J., Yebra, L.J.: Modelling and real-time simulation of heliostat fields in central receiver plants. In: Proc. of the 6th Int. Conf. on Mathematical Modelling, Vienna, Austria, pp. 2576–2579 (2009) Google Scholar
  14. 59.
    Bonilla, J., Roca, L., Yebra, L.J., Dormido, S.: Real-time simulation of CESA-1 central receiver solar thermal power plant. In: Proc. of the 7th Int. Modelica Conf., Como, Italy, 2009 Google Scholar
  15. 61.
    Borrelli, F., Bemporad, A., Fodor, M., Hrovat, D.: An MPC/hybrid system approach to traction control. IEEE Trans. Control Syst. Technol. 14(3), 541–552 (2006) CrossRefGoogle Scholar
  16. 64.
    Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (1998) CrossRefMATHMathSciNetGoogle Scholar
  17. 65.
    Braun, K.P.: HELIOS—simulation of the incident flux distribution on the TSA receiver. Internal Report, PSA (1996) Google Scholar
  18. 66.
    Braun, M.W., Ortiz-Mojica, R., Rivera, D.E.: Design of minimum crest factor multisinusoidal signals for plant-friendly identification of nonlinear process systems. Control Eng. Pract. 3(3), 301–313 (2002) CrossRefGoogle Scholar
  19. 72.
    Buie, D., Monger, A.G.: The effect of circumsolar radiation on a solar concentrating system. Sol. Energy 76(1–3), 181–185 (2004) CrossRefGoogle Scholar
  20. 85.
    Camacho, E.F., Berenguel, M., Rubio, F.R.: Advanced Control of Solar Plants. Springer, Berlin (1997) CrossRefGoogle Scholar
  21. 118.
    Collado, F.J.: One-point fitting of the flux density produced by a heliostat. Sol. Energy 84(4), 673–684 (2010) CrossRefGoogle Scholar
  22. 125.
    Deshmukh, M.K., Deshmukh, S.S.: Modeling of hybrid renewable energy systems. Renew. Sustain. Energy Rev. 12(1), 235–249 (2008) CrossRefGoogle Scholar
  23. 126.
    Du, J., Song, C., Li, P.: Modeling and control of a continuous stirred tank reactor based on a mixed logical dynamical model. Chin. J. Chem. Eng. 15(4), 533–538 (2007) CrossRefGoogle Scholar
  24. 128.
    Eborn, J.: On model libraries for thermo-hydraulic applications. PhD Thesis, Department of Automatic Control, Lund Institute of Technology, Sweden (2001) Google Scholar
  25. 147.
    Garcia, P., Ferriere, A., Bezian, J.J.: Codes for solar flux calculation dedicated to central receiver system applications: a comparative review. Sol. Energy 82, 189–197 (2008) CrossRefGoogle Scholar
  26. 149.
    García-Martín, F.J., Berenguel, M., Camacho, E.F., Rubio, F.R.: Automatic control of a solar furnace. Internal Report GAR 1996/06, U. Sevilla, Dept. Ing. Sistemas y Automática, ESI, Spain (1996) Google Scholar
  27. 150.
    García-Martín, F.J., Berenguel, M., Valverde, A., Camacho, E.F.: Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver. Sol. Energy 66(5), 355–369 (1999) CrossRefGoogle Scholar
  28. 159.
    González, J., Yebra, L., Valverde, A., Berenguel, M., Peralta, M.: Real-time system applications in solar thermal plants. In: 13th SOLARPACES Int. Symp., Seville, Spain, 2006 Google Scholar
  29. 164.
    Grossmann, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.): Hybrid Systems. Lecture Notes in Computer Science, vol. 736. Springer, Berlin (1993) MATHGoogle Scholar
  30. 170.
    Haeger, M., Keller, L., Monterreal, R., Valverde, A.: Phoebus Technology Program Solar Air Receiver (TSA). CIEMAT, Madrid (1994) Google Scholar
  31. 172.
    Hallet, R.W., Gervais, R.L.: Central Receiver Solar Thermal Power System, vol. III-book 2, SAN-1108-76-8, MDC G6776. McDonnell Douglas Corporation (1977) Google Scholar
  32. 173.
    Heemels, W.P.M.H., Schutter, B.D., Bemporad, A.: Equivalence of hybrid dynamical models. Automatica 37(7), 1085–1091 (2001) CrossRefMATHGoogle Scholar
  33. 174.
    Heemels, W.P.M.H., Schutter, B.D., Bemporad, A.: On the equivalence of classes of hybrid dynamical models. In: 40th IEEE Conf. on Decision and Control, Orlando, FL, USA, pp. 364–369 (2001) Google Scholar
  34. 181.
    Hoffschmidt, B., Pitz-Paal, R., Böhmer, M.: Porous structures for volumetric receivers—comparison of experimental and numerical results. In: Proc. of the 8th Int. Symp. on Solar Thermal Concentrating Technologies, Cologne, Germany, pp. 567–587 (1996) Google Scholar
  35. 210.
    King, D.L.: Beam Quality and Tracking Accuracy Evaluation of Second Generation and Barstow Production Heliostats, SAND82-0181. McDonnell Douglas Corporation (1982) Google Scholar
  36. 211.
    King, D.L., Arvizu, D.E.: Heliostat characterization at the central receiver test facility. Trans. ASME J. Sol. Energy Eng. 103, 82–88 (1981) CrossRefGoogle Scholar
  37. 216.
    Kolb, G.J., Scott, A.J., Donnelly, M.W., Gorman, D., Thomas, R., Davenport, R., Lumia, R.: Heliostat cost reduction study, SAND2007-3293. (2007)
  38. 217.
    Kribus, A., Ries, H., Spirkl W.: Inherent limitations of volumetric solar receivers. J. Sol. Energy Eng. 118, 151–155 (1996) CrossRefGoogle Scholar
  39. 227.
    Liberzon, D.: Switching in Systems and Control. Springer, Boston (2003) CrossRefMATHGoogle Scholar
  40. 238.
    Mancini, T.: Heliostat daily centroid shift. Report No. III-1/99, IEA SolarPACES (1999) Google Scholar
  41. 253.
    Mignone, D.: The REALLY big collection of logic propositions and linear inequalities.;action=details;id=377 (2002)
  42. 255.
    Mittelmann, H.D., Pendse, G., Rivera, D.E., Lee, H.: Optimization-based design of plant-friendly multisine signals using geometric discrepancy criteria. Comput. Optim. Appl. 38, 173–190 (2007) CrossRefMATHMathSciNetGoogle Scholar
  43. 257.
    Modelica Association: Modelica, a unified object oriented language for physical systems modeling. Language specification 2.2. Technical Report. (2005)
  44. 258.
    Modelica Association: Modelica standard library, version 2.2.1. (2007)
  45. 259.
    Monterreal, R., Heller, P.: Large area heliostat comparison at PSA. Internal Report, PSA (1997) Google Scholar
  46. 266.
    Neumann, A., Witzke, A., Jones, S.A., Schimtt, G.: Representative terrestrial solar brightness profiles. J. Sol. Energy Eng. 124(2), 198–204 (2002) CrossRefGoogle Scholar
  47. 277.
    Ogunnaike, B.A., Ray, W.H.: Process Dynamics, Modeling and Control. Academic Press, San Diego (1994) Google Scholar
  48. 287.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Series in Computational and Physical Processes in Mechanics and Thermal Sciences. Taylor & Francis, London (1980) MATHGoogle Scholar
  49. 294.
    Phipps, G.S.: Heliostat beam characterization system—calibration technique. In: Proc. ISA/79 Conf., Chicago, IL, USA, 1979 Google Scholar
  50. 306.
    Ramos, F., Crespo, L.: A new powerful tool for heliostat field layout and receiver geometry optimization: NSPOC. In: Proc. of Concentrating Solar Power and Chemical Energy Systems SolarPACES, Berlin, Germany, 2009 Google Scholar
  51. 316.
    Rivera, D.E., Lee, H., Braun, M.W., Mittelmann, H.D.: Plant-friendly system identification: a challenge for the process industries. In: Proc. of the 13th IFAC Symp. on System Identification, Rotterdam, The Netherlands, pp. 97–104 (2003) Google Scholar
  52. 317.
    Rivera, D.E., Lee, H., Mittelmann, H.D., Braun, M.W.: Constrained multisine input signals for plant-friendly identification of chemical process systems. J. Process Control 19(4), 623–635 (2009) CrossRefGoogle Scholar
  53. 324.
    Romero, M., Buck, R., Pacheco, J.E.: An update on solar central receiver systems, projects, and technologies. J. Sol. Energy Eng. 124(2), 98–109 (2002) CrossRefGoogle Scholar
  54. 357.
    Spirkl, W., Ries, H., Kribus, A.: Optimal parallel flow in solar collectors for nonuniform irradiance. Trans. ASME 119, 156–159 (1997) CrossRefGoogle Scholar
  55. 359.
    Stine, W.B., Geyer, M.: Power from the Sun. (2001)
  56. 361.
    Stone, K.W.: Automatic heliostat track alignment method. US Patent 4,564,275, 14 January 1986 Google Scholar
  57. 362.
    Stone, K.W., Blackmon, J.B.: Alignment system and method for dish concentrators. US Patent 5,982,481, 9 November 1999 Google Scholar
  58. 363.
    Stone, K.W., Lopez, C.W.: Evaluation of the solar one track alignment methodology. Trans. ASME J. Sol. Energy Eng. S.1, 521–526 (1995) Google Scholar
  59. 364.
    Strachan, J.W.: Revisiting the BCS, a measurement system for characterizing the optics of solar collectors. In: Proc. of the 39th Int. Symp. of Instrument Society of America, 1992 Google Scholar
  60. 365.
    Strachan, J.W., Houser, R.: Testing and evaluation of large-area heliostat for solar thermal applications. SAND92-1381-UC-235, Sandia National Laboratories, USA (1993) Google Scholar
  61. 370.
    Thalhammer, E.D.: Heliostat beam characterization system—update. In: Proc. ISA/79 Conf., Chicago, IL, USA, 1979 Google Scholar
  62. 373.
    Torrisi, F.D., Bemporad, A.: HYSDEL—a tool for generating computational hybrid models for analysis and synthesis problems. IEEE Trans. Control Syst. Technol. 12(2), 235–249 (2004) CrossRefMathSciNetGoogle Scholar
  63. 379.
    Tyner, C., Kolb, G., Prairie, M., Weinrebe, G., Valverde, A., Sánchez, M.: Solar power tower development: recent experiences. In: Proc. of the 8th Int. Symp. on Solar Thermal Concentrating Technologies, Cologne, Germany, pp. 193–216 (1996) Google Scholar
  64. 387.
    Valverde, A., Weinrebe, G.: Implementation of an automatic aiming-point strategy for a volumetric receiver in the PSA’s CESA-1 heliostat field. In: Proc. of the 8th Int. Symp. on Solar Thermal Concentrating Technologies, Cologne, Germany, pp. 1047–1066 (1996) Google Scholar
  65. 390.
    Vant-Hull, L.L., Izygon, M., Pitman, C.L.: Assessment of the real-time receiver excess-flux-density protection software at Solar Two. In: Proc. of the 8th Int. Symp. on Solar Thermal Concentrating Technologies, Cologne, Germany, pp. 951–970 (1996) Google Scholar
  66. 395.
    Wei, X., Lu, Z., Yu, W., Wang, Z.: A new code for the design and analysis of the heliostat field layout for power tower system. Sol. Energy 84, 685–690 (2010) CrossRefGoogle Scholar
  67. 405.
    Yebra, L.J., Berenguel, M., Dormido, S., Romero, M.: Modelling and simulation of central receiver solar thermal power plants. In: Proc. of the 44th IEEE Conf. on Decision and Control, and the European Control Conf. 2005, Seville, Spain, 2005 Google Scholar
  68. 422.
    Zhang, L., Zhang, Y., Wang, D., Xu, D.: Multiple models generalized predictive control for superheated steam temperature based on MLD model. In: Proc. of 2007 IEEE Int. Conf. on Automation and Logistics, Jinan, Shandong, China, pp. 2740–2743 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Eduardo F. Camacho
    • 1
  • Manuel Berenguel
    • 2
  • Francisco R. Rubio
    • 1
  • Diego Martínez
    • 3
  1. 1.Departamento de Ingeniería de Sistemas y Automática, Escuela Superior de IngenierosUniversidad de SevillaSevilleSpain
  2. 2.Departamento de Lenguajes y Computación, Escuela Superior de IngenieríaUniversidad de AlmeríaAlmeríaSpain
  3. 3.Plataforma Solar de Almería, Centro Europeo de Ensayos de Energía SolarCIEMATTabernasSpain

Personalised recommendations