Advertisement

Advanced Control of Parabolic Troughs

  • Eduardo F. Camacho
  • Manuel Berenguel
  • Francisco R. Rubio
  • Diego Martínez
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter is devoted to overviewing advanced control techniques aimed at taking into account the special dynamic features of distributed solar collector fields (DSCF). Many of the applications included in this chapter have been tested at the ACUREX field of the PSA. The main features of the different advanced control approaches used during the last 30 years to control DSCF are outlined and are summarized in this chapter. It is difficult to demonstrate the relative merits of one controller with respect to the others since they are based on different conceptual and methodological approaches and the exact conditions in which the tests are performed are different (mainly in terms of solar radiation and inlet HTF temperature conditions). As has been mentioned, the DSCF may be described by a distributed parameter model of the temperature. The frequency response contains resonance modes near the bandwidth that must be taken into consideration in the controller in order to achieve high performance. The control techniques outlined in this chapter try to find a trade-off between commissioning time and performance. Different characteristics have been studied and are the basis for the selection of each technique, mainly depending on the knowledge the user has of the process and on the techniques: the degree of difficulty in obtaining the model/controller tuning, degree of difficulty in the model/controller implementation, degree of acceptance by the operators, robustness, stability and performance results, use of design and/or implementation constraints, disturbance rejection capabilities, starting up of the operation and the existence of real tests.

Keywords

Solar Irradiance Controller Parameter Fuzzy Logic Control Internal Model Control Feedforward Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    Allidina, A.Y., Hughes, F.M.: Generalized self-tuning controller with pole assignment. IEE Proc. Part D 127, 13–18 (1980) MATHGoogle Scholar
  2. 4.
    Allwright, J.C.: On min–max model-based predictive control. In: Clarke, D.W. (ed.) Advances in Model-Based Predictive Control. Oxford University Press, London (1994) Google Scholar
  3. 8.
    Álvarez, J.D., Yebra, L.J., Berenguel, M.: Repetitive control of tubular heat exchangers. J. Process Control 17(9), 689–701 (2007) CrossRefGoogle Scholar
  4. 11.
    Álvarez, J.D., Yebra, L.J., Berenguel, M.: Adaptive repetitive control for resonance cancellation of a distributed solar collector field. Int. J. Adapt. Control Signal Process. 23, 331–352 (2009) MATHCrossRefGoogle Scholar
  5. 12.
    Álvarez, J.D., Costa-Castelló, R., Berenguel, M., Yebra, L.J.: A repetitive control scheme for distributed solar collector field. Int. J. Control 83(5), 970–982 (2010) MATHCrossRefGoogle Scholar
  6. 16.
    Arahal, M.R., Berenguel, M., Camacho, E.F.: Nonlinear neural model-based predictive control of a solar plant. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, vol. TH-E I2, 1997 Google Scholar
  7. 17.
    Arahal, M.R., Berenguel, M., Camacho, E.F.: Comparison of RBF algorithms for output temperature prediction of a solar plant. In: Proc. of CONTROLO’98, Coimbra, Portugal, 1998 Google Scholar
  8. 18.
    Arahal, M.R., Berenguel, M., Camacho, E.F.: Neural identification applied to predictive control of a solar plant. Control Eng. Pract., 333–344 (1998) Google Scholar
  9. 23.
    Åström, K.J., Hägglund, T.: Advanced PID Control. ISA—The Instrumentation, Systems, and Automation Society, Research Triangle Park (2005) Google Scholar
  10. 25.
    Åström, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading (1989) MATHGoogle Scholar
  11. 28.
    Barão, M.: Dynamics and nonlinear control of a solar collector field. PhD Thesis, Universidade Tecnica de Lisboa, Instituto Superior Tecnico, Lisbon, Portugal (2000) Google Scholar
  12. 29.
    Barão, M., Lemos, J.M., Silva, R.N.: Reduced complexity adaptive nonlinear control of a distributed collector solar field. J. Process Control 12(1), 131–141 (2002) CrossRefGoogle Scholar
  13. 30.
    Bazaraa, M.S., Shetty, C.M.: Nonlinear Programming. Wiley, New York (1979) MATHGoogle Scholar
  14. 34.
    Berenguel, M.: Contributions to the control of distributed solar collectors. PhD Thesis, Universidad de Sevilla, Spain (1996) (in Spanish) Google Scholar
  15. 36.
    Berenguel, M., Camacho, E.F.: Frequency based adaptive control of systems with antiresonance modes. In: Proc. of the 5th IFAC Symp. of Adaptive Systems in Control and Signal Processing, ACASP’95, Budapest, Hungary, pp. 195–200 (1995) Google Scholar
  16. 37.
    Berenguel, M., Camacho, E.F.: Frequency based adaptive control of systems with antiresonance modes. Control Eng. Pract. 4(5), 677–684 (1996) CrossRefGoogle Scholar
  17. 38.
    Berenguel, M., Camacho, E.F., Rubio, F.R.: Simulation software package for the Acurex field. Internal Report, Dpto. de Ingeniería de Sistemas y Automática, ESI Sevilla, Spain. www.esi2.us.es/~rubio/libro2.html (1994)
  18. 39.
    Berenguel, M., Camacho, E.F., Rubio, F.R., Balsa, P.: Gain scheduling generalized predictive controller applied to the control of a parabolic trough solar collectors field. In: Proc. of the 8th Int. Symp. on Solar Thermal Concentrating Technologies, Cologne, Germany, vol. 2, pp. 685–703 (1996) Google Scholar
  19. 40.
    Berenguel, M., Arahal, M.R., Camacho, E.F.: Modeling free response of a solar plant for predictive control. In: Proc. of the 11th IFAC Symp. on Systems Identification, SYSID’97, Fukuoka, Japan, pp. 1291–1296 (1997) Google Scholar
  20. 41.
    Berenguel, M., Camacho, E.F., Rubio, F.R., Luk, P.C.K.: Incremental fuzzy PI control of a solar power plant. IEE Proc. Part D 144(6), 596–604 (1997) MATHGoogle Scholar
  21. 42.
    Berenguel, M., Arahal, M.R., Camacho, E.F.: Modeling free response of a solar plant for predictive control. Control Eng. Pract. 6, 1257–1266 (1998) CrossRefGoogle Scholar
  22. 44.
    Berenguel, M., Rubio, F.R., Camacho, E.F., Gordillo, F.: Techniques and applications of fuzzy logic control of solar power plants. In: Leondes, C.T. (ed.) Fuzzy Theory Systems Techniques and Applications, vol. 2. Academic Press, San Diego (1999) (Chap. 25) Google Scholar
  23. 46.
    Berenguel, M., Cirre, C.M., Klempous, R., Maciejewski, H., Nikodem, J., Nikodem, M., Rudas, I., Valenzuela, L.: Hierarchical control of a distributed solar collector field. Lect. Notes Comput. Sci. 3643, 614–620 (2005) CrossRefGoogle Scholar
  24. 47.
    Berenguel, M., Klempous, R., Maciejewski, H., Nikodem, J., Nikodem, M., Valenzuela, L.: Explanatory analysis of data from a distributed solar collector field. Lect. Notes Comput. Sci. 3643, 621–626 (2005) CrossRefGoogle Scholar
  25. 49.
    Bierman, G.: Factorization Methods for Discrete Estimation. Academic Press, New York (1977) MATHGoogle Scholar
  26. 57.
    Bodson, M., Douglas, S.C.: Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency. Automatica 33(12), 2213–2221 (1997) MATHMathSciNetCrossRefGoogle Scholar
  27. 67.
    Brdys, M.A., Tatjewski, P.: Iterative Algorithms for Multilayer Optimizing Control. Imperial College Press, London (2005) MATHCrossRefGoogle Scholar
  28. 70.
    Brus, L., Zambrano, D.: Black-box identification of solar collector dynamics with variant time delay. Control Eng. Pract. 18, 1133–1146 (2010) CrossRefGoogle Scholar
  29. 71.
    Brus, L., Wigren, T., Zambrano, D.: Feedforward model predictive control of a non-linear solar collector plant with varying delays. IET Control Theory Appl. 4(8), 1421–1435 (2009) CrossRefGoogle Scholar
  30. 74.
    Camacho, E.F., Berenguel, M.: Application of generalized predictive control to a solar power plant. In: Proc. of the EC Esprit/CIM CIDIC Conf. Advances in Model-Based Predictive Control, Oxford, UK, vol. 2, pp. 182–188 (1993) Google Scholar
  31. 75.
    Camacho, E.F., Berenguel, M.: Application of generalized predictive control to a solar power plant. In: Clarke, D.W. (ed.) Advances in Model-Based Predictive Control. Oxford University Press, London (1994) Google Scholar
  32. 76.
    Camacho, E.F., Berenguel, M.: Application of generalized predictive control to a solar power plant. In: Proc. of the Third IEEE Conf. on Control Applications, Glasgow, UK, pp. 1657–1662 (1994) CrossRefGoogle Scholar
  33. 77.
    Camacho, E.F., Berenguel, M.: Robust adaptive model predictive control of a solar plant with bounded uncertainties. Int. J. Adapt. Control Signal Process. 11(4), 311–325 (1997) MATHMathSciNetCrossRefGoogle Scholar
  34. 78.
    Camacho, E.F., Bordóns, C.: Simple implementation of generalized predictive self-tuning controllers for industrial processes. Int. J. Adapt. Control Signal Process. 7, 63–73 (1993) CrossRefGoogle Scholar
  35. 79.
    Camacho, E.F., Bordóns, C.: Model Predictive Control in the Process Industry. Springer, Berlin (1995) CrossRefGoogle Scholar
  36. 80.
    Camacho, E.F., Bordóns, C.: Model Based Predictive Control. Springer, Berlin (2004) CrossRefGoogle Scholar
  37. 82.
    Camacho, E.F., Rubio, F.R., Hughes, F.M.: Self-tuning control of a solar power plant with a distributed collector field. IEEE Control Syst. Mag., 72–78 (1992) Google Scholar
  38. 83.
    Camacho, E.F., Berenguel, M., Bordóns, C.: Adaptive generalized predictive control of a distributed collector field. IEEE Trans. Control Syst. Technol. 2(4), 462–467 (1994) CrossRefGoogle Scholar
  39. 84.
    Camacho, E.F., Berenguel, M., Rubio, F.R.: Application of a gain scheduling generalized predictive controller to a solar power plant. Control Eng. Pract. 2(2), 227–238 (1994) CrossRefGoogle Scholar
  40. 85.
    Camacho, E.F., Berenguel, M., Rubio, F.R.: Advanced Control of Solar Plants. Springer, Berlin (1997) CrossRefGoogle Scholar
  41. 86.
    Camacho, E.F., Rubio, F.R., Berenguel, M.: Application of fuzzy logic control to a solar power plant. In: Mielczarski, W. (ed.) Fuzzy Logic Techniques in Power Systems. Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg (1997) Google Scholar
  42. 88.
    Camacho, E.F., Rubio, F.R., Berenguel, M., Valenzuela, L.: A survey on control schemes for distributed solar collector fields. Part II: Advanced control approaches. Sol. Energy 81, 1252–1272 (2007) CrossRefGoogle Scholar
  43. 90.
    Campo, P.J., Morari, M.: Robust model predictive control. In: Proc. of the American Control Conf., Minneapolis, MN, USA, 1987 Google Scholar
  44. 93.
    Cao, Z., Ledwich, G.F.: Adaptive repetitive control to track variable periodic signals with fixed sampling rate. IEEE/ASME Trans. Mechatron. 7(3), 374–384 (2002) Google Scholar
  45. 94.
    Cardoso, A.L., Henriques, J., Dourado, A.: Fuzzy supervisor and feedforward control of a solar power plant using accessible disturbances. In: Proc. of the European Control Conf., ECC’99, Karlsruhe, Germany, 1999 Google Scholar
  46. 95.
    Cardoso, A.L., Gil, P., Henriques, J., Duarte-Ramos, H., Dourado, A.: A robust fault tolerant model-based control framework: application to a solar power plant. In: IASTED-ISC, Salzburg, Austria, 2003 Google Scholar
  47. 96.
    Cardoso, A.L., Gil, P., Henriques, J., Carvalho, P., Duarte-Ramos, H., Dourado, A.: Experiments with a fault tolerant adaptive controller on a solar power plant. In: CONTROLO’04, 6th Portuguese Conf. on Automatic Control, Faro, Portugal, 2004 Google Scholar
  48. 99.
    Carotenuto, L., Cava, M.L., Raiconi, G.: Regular design for the bilinear distributed parameter of a solar power plant. Int. J. Syst. Sci. 16, 885–900 (1985) MATHCrossRefGoogle Scholar
  49. 100.
    Carotenuto, L., Cava, M.L., Muraca, P., Raiconi, G.: Feedforward control for the distributed parameter model of a solar power plant. Large Scale Syst. 11, 233–241 (1986) MATHGoogle Scholar
  50. 104.
    Cirre, C.M., Moreno, J.C., Berenguel, M.: Robust QFT control of a solar collectors field. In: Martínez, D. (ed.) IHP Programme. Research Results at PSA Within the Year 2002 Access Campaign. CIEMAT, Madrid (2003) Google Scholar
  51. 105.
    Cirre, C.M., Valenzuela, L., Berenguel, M., Camacho, E.F.: A control strategy integrating automatic setpoint generation and feedforward control for a distributed solar collector field. In: Proc. XIV Jornadas de Automática, León, Spain, 2004 (in Spanish) Google Scholar
  52. 106.
    Cirre, C.M., Valenzuela, L., Berenguel, M., Camacho, E.F.: Control de plantas solares con generación automática de consignas. Rev. Iberoam. Autom. Inform. Ind. 1, 56–66 (2004) Google Scholar
  53. 107.
    Cirre, C.M., Valenzuela, L., Berenguel, M., Camacho, E.F.: Feedback linearization control for a distributed solar collector field. In: Proc. of the 16th IFAC World Congress, Prague, Czech Republic, 2005 Google Scholar
  54. 108.
    Cirre, C.M., Valenzuela, L., Berenguel, M., Camacho, E.F., Zarza, E.: Fuzzy setpoint generator for a distributed collectors solar field. In: ICIIEM—1st Int. Congress on Energy and Environment Engineering and Management, Portalegre, Portugal, 2005 Google Scholar
  55. 109.
    Cirre, C.M., Berenguel, M., Valenzuela, L., Camacho, E.F.: Feedback linearization control for a distributed solar collector field. Control Eng. Pract. 15, 1533–1544 (2007) CrossRefGoogle Scholar
  56. 110.
    Cirre, C.M., Berenguel, M., Valenzuela, L., Klempous, R.: Reference governor optimization and control of a distributed solar collector field. Eur. J. Oper. Res. 193, 709–717 (2009) MATHCrossRefGoogle Scholar
  57. 111.
    Cirre, C.M., Moreno, J.C., Berenguel, M., Guzmán, J.L.: Robust control of solar plants with distributed collectors. In: Proc. of the 2010 IFAC Int. Symp. on Dynamics and Control of Process Systems, DYCOPS 2010, Leuven, Belgium, 2010, Paper ID: 103 Google Scholar
  58. 112.
    Clarke, D.W., Mohtadi, C.: Properties of Generalized Predictive Control. Automatica 25(6), 859–875 (1989) MATHMathSciNetCrossRefGoogle Scholar
  59. 116.
    Coito, F., Lemos, J.M., Rato, L.M., Silva, R.N.: Experiments in predictive control of a distributed collectors solar field. In: Proc. of the Portuguese Automatic Control Conf. CONTROLO’96, Porto, Portugal, 1996 Google Scholar
  60. 117.
    Coito, F., Lemos, J.M., Silva, R.N., Mosca, E.: Adaptive control of a solar energy plant: exploiting acceptable disturbances. Int. J. Adapt. Control Signal Process. 11(4), 327–342 (1997) MATHMathSciNetCrossRefGoogle Scholar
  61. 122.
    Costa-Castelló, R., Nebot, J., Griñó, R.: Demonstration of the internal model principle by digital repetitive control of an educational laboratory plant. IEEE Trans. Ed. 48(1), 73–80 (2005) CrossRefGoogle Scholar
  62. 130.
    Eck, M., Zarza, E., Eickhoff, M., Rheilander, J., Valenzuela, L.: Applied research concerning the direct steam generation in parabolic troughs. Sol. Energy 74, 341–351 (2003) CrossRefGoogle Scholar
  63. 135.
    Farkas, I., Vajk, I.: Experiments with internal model-based controller for Acurex field. In: Martínez, D. (ed.) Proc. of the 2nd Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (2002) Google Scholar
  64. 136.
    Farkas, I., Vajk, I.: Internal model-based controller for a solar plant. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, 2002 Google Scholar
  65. 142.
    Flores, A., Saez, D., Araya, J., Berenguel, M., Cipriano, A.: Fuzzy predictive control of a solar power plant. IEEE Trans. Fuzzy Syst. 13(1), 58–68 (2005) CrossRefGoogle Scholar
  66. 143.
    Fortescue, T.R., Kershenbaum, L.S., Ydstie, B.E.: Implementation of self-tuning regulators with variable forgetting factors. Automatica 17(6), 831–835 (1981) CrossRefGoogle Scholar
  67. 145.
    Franklin, G.F., Powell, J.D.: Digital Control of Dynamic Systems. Addison-Wesley, London (1980) Google Scholar
  68. 146.
    Gálvez-Carrillo, M., De Keyser, R., Ionescu, C.: Nonlinear predictive control with dead-time compensator: application to a solar power plant. Sol. Energy 83, 743–752 (2009) CrossRefGoogle Scholar
  69. 152.
    Ghezelayagh, H., Lee, K.Y.: Application of neuro-fuzzy identification in the predictive control of power plant. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, 2002 Google Scholar
  70. 153.
    Gil, P., Henriques, J., Dourado, A.: Recurrent neural networks and feedback linearization for a solar power plant control. In: Proc. of EUNIT01, Tenerife, Spain, 2001 Google Scholar
  71. 154.
    Gil, P., Henriques, J., Cardoso, A., Dourado, A.: Neural network in scheduling linear controllers with application to a solar power plant. In: Proc. of the 5th IASTED Int. Conf. on Control and Applications, Cancun, Mexico, 2002 Google Scholar
  72. 155.
    Gil, P., Henriques, J., Carvalho, P., Duarte-Ramos, H., Dourado, A.: Adaptive neural model-based predictive controller of a solar power plant. In: Proc. of the IEEE Int. Joint Conf. on Neural Networks, IJCNN’02, Honolulu, USA, 2002 Google Scholar
  73. 156.
    Gil, P., Cardoso, A., Henriques, J., Carvalho, P., Duarte-Ramos, H., Dourado, A.: Experiments with an adaptive neural model-based predictive controller applied to a distributed solar collector field: performance and fault tolerance assessment. In: Martínez, D. (ed.) IHP Programme. Research Results at PSA Within the Year 2002 Access Campaign. CIEMAT, Madrid (2003) Google Scholar
  74. 160.
    Gordillo, F., Rubio, F.R., Camacho, E.F., Berenguel, M., Bonilla, J.P.: Genetic design of a fuzzy logic controller for a solar power plant. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, p. 268 (1997) Google Scholar
  75. 162.
    Greco, C., Menga, G., Mosca, E., Zappa, G.: Performance improvements of self-tuning controllers by multistep horizons: the MUSMAR approach. Automatica 20, 681–699 (1984) MATHMathSciNetCrossRefGoogle Scholar
  76. 169.
    Guzmán, J.L., Berenguel, M., Dormido, S.: Interactive teaching of constrained generalized predictive control. IEEE Control Syst. Mag. 25(2), 52–66 (2005) CrossRefGoogle Scholar
  77. 171.
    Hägglund, T.: An industrial dead time compensating PI controller. Control Eng. Pract. (4), 749–756 (1996) Google Scholar
  78. 178.
    Henriques, J., Cardoso, A., Dourado, A.: Supervision and c-Means clustering of PID controllers for a solar power plant. Int. J. Approx. Reason. 22(1–2), 73–91 (1999) MATHMathSciNetCrossRefGoogle Scholar
  79. 179.
    Henriques, J., Gil, P., Dourado, A.: Neural output regulation for a solar power plant. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, 2002 Google Scholar
  80. 182.
    Horowitz, I.: Quantitative Feedback Design Theory (QFT). QFT Publications, Colorado (1993) Google Scholar
  81. 186.
    Igreja, J.M., Lemos, J.M., Barão, M., Silva, R.N.: Adaptive nonlinear control of a distributed collector solar field. In: Proc. of the European Control Conf., ECC’03, Cambridge, UK, 2003 Google Scholar
  82. 189.
    Isidori, A.: Nonlinear Control Systems. Springer, Berlin (1995) MATHGoogle Scholar
  83. 191.
    Jalili-Kharaajoo, M.: Predictive control of a solar power plant with neuro-fuzzy identification and evolutionary programming optimization. In: Proc. of the IEEE Conf. on Emerging Technologies and Factory Automation, ETFA’03, Lisbon, Portugal, vol. 2, pp. 173–176 (2004) Google Scholar
  84. 192.
    Jalili-Kharaajoo, M., Besharati, F.: Intelligent predictive control of a solar power plant with neuro-fuzzy identifier and evolutionary programming optimizer. In: Proc. of the IEEE Conf. on Emerging Technologies and Factory Automation, ETFA’03, Lisbon, Portugal, vol. 2, pp. 173–176 (2003) Google Scholar
  85. 194.
    Jiang, J.: Optimal gain scheduling controller for a diesel engine. IEEE Control Syst. Mag., 42–48 (1994) Google Scholar
  86. 195.
    Johansen, T.A., Storaa, C.: An internal energy controller for distributed solar collector fields. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop IHP Programme, CIEMAT. CIEMAT, Madrid (2002) Google Scholar
  87. 196.
    Johansen, T.A., Storaa, C.: Energy-based control of a distributed solar collector field. Automatica 38(7), 1191–1199 (2002) MATHMathSciNetCrossRefGoogle Scholar
  88. 197.
    Johansen, T.A., Hunt, K.J., Petersen, I.: Gain-scheduled control of a solar power plant. Control Eng. Pract. 8(9), 1011–1022 (2000) CrossRefGoogle Scholar
  89. 198.
    Juuso, E.K.: Fuzzy control in process industry. In: Verbruggen, H.B. et al. (eds.) Fuzzy Algorithms for Control. Kluwer Academic, Boston (1999) Google Scholar
  90. 199.
    Juuso, E.K., Valenzuela, L.: Adaptive intelligent control of a solar collector field. In: Proc. of the 3rd European Symp. on Intelligent Technologies, Hybrid Systems and Their Implementation on Smart Adaptive Systems, EUNITE 2003, Oulu, Finland, 2003 Google Scholar
  91. 200.
    Juuso, E.K., Balsa, P., Leiviska, K.: Linguistic equation controller applied to a solar collectors field. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, 1997 Google Scholar
  92. 201.
    Juuso, E.K., Balsa, P., Valenzuela, L.: Multilevel linguistic equation controller applied to a 1MWh solar power plant. In: Proc. of the 1998 American Control Conf., ACC’98, Philadelphia, USA, vol. 6, pp. 3891–3895 (1998) Google Scholar
  93. 202.
    Juuso, E.K., Balsa, P., Valenzuela, L., Leiviska, K.: Robust intelligent control of a distributed solar collector field. In: Proc. of CONTROLO’98, the 3rd Portuguese Conf. on Automatic Control, Coimbra, Portugal, vol. 2, pp. 621–626 (1998) Google Scholar
  94. 203.
    Kalogirou, S.A.: Applications of artificial neural-networks for energy systems. Appl. Energy 67, 17–35 (2000) CrossRefGoogle Scholar
  95. 204.
    Kalogirou, S.A.: Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev. 5, 373–401 (2001) CrossRefGoogle Scholar
  96. 207.
    Kasabov, N.K.: Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering. MIT Press, Cambridge (1995) Google Scholar
  97. 208.
    Ke, J.Y., Tang, K.S., Man, K.F., Luk, P.C.K.: Hierarchical genetic fuzzy controller for a solar power plant. In: Proc. of the IEEE Int. Symp. on Industrial Electronics, ISIE’98, South Africa, pp. 584–588 (1998) Google Scholar
  98. 215.
    Klempous, R., Maciejewski, H., Nikodem, M., Nikodem, J., Berenguel, M., Valenzuela, L.: Data driven methods and data analysis of a distributed solar collector field. In: Proc. of the 4th Int. Conf. on Applied Mathematics, APLIMAT 2005, Bratislava, Slovak, pp. 205–212 (2005) Google Scholar
  99. 218.
    Kurzt, M.J., Henson, M.A.: Input–output linearizing control of constrained nonlinear processes. J. Process Control 7, 3–17 (1996) Google Scholar
  100. 219.
    Kurzt, M.J., Henson, M.A.: Feedback linearizing control of discrete-time nonlinear systems with inputs constraints. Int. J. Control 70(2), 603–616 (1998) Google Scholar
  101. 223.
    Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller—Part I. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990) MATHCrossRefGoogle Scholar
  102. 224.
    Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller—Part II. IEEE Trans. Syst. Man Cybern. 20(2), 419–435 (1990) MATHCrossRefGoogle Scholar
  103. 225.
    Lemos, J.M., Rato, L.M., Mosca, E.: Integrating predictive and switching control: basic concepts and an experimental case study. In: Allgower, F., Zheng, A. (eds.) Nonlinear Model Predictive Control. Birkhäuser, Basel (2000) Google Scholar
  104. 226.
    León, J., Valenzuela, L.: DISS project. Results of three years operating a thermal solar plant with parabolic collectors for direct steam production. In: Proc. XI Congreso Ibérico–VI Congreso Iberoamericano de Energía Solar, Vilamoura-Algarve, Portugal, 2002 (in Spanish) Google Scholar
  105. 228.
    Limón, D., Alvarado, I., Álamo, T., Arahal, M.R., Camacho, E.F.: Robust control of the distributed solar collector field ACUREX using MPC for tracking. In: Proc. of the 17th World Congress of IFAC, Seoul, Korea, 2008 Google Scholar
  106. 232.
    Loebis, D.: Fuzzy logic control of a solar power plant. Master’s Dissertation, University of Sheffield, UK (2000) Google Scholar
  107. 233.
    Luk, P.C.K., Khoo, K.K., Berenguel, M.: Direct fuzzy logic control of a solar power plant using distributed collector fields. In: Proc. of the 2nd Int. ICSC Symp. on Soft Computing and Intelligent Industrial Automation, SOCO’97, Nimes, France, pp. 81–89 (1997) Google Scholar
  108. 234.
    Luk, P.C.K., Low, K.C., Sayiah, A.: GA-based fuzzy logic control of a solar power plant using distributed collector fields. Renew. Energy 16(1–4), 765–768 (1999) CrossRefGoogle Scholar
  109. 235.
    Maciejewski, H., Berenguel, M., Valenzuela, L., Cirre, C.M.: Data mining—applications and perspectives for solar plant control and monitoring. In: Martínez, D. (ed.) IHP Programme—Research Results at PSA Within the Year 2003 Access Campaign. CIEMAT, Madrid (2004) Google Scholar
  110. 236.
    Maciejewski, H., Valenzuela, L., Berenguel, M., Adamus, K.: Performing direct steam generation solar plant analysis through data mining. In: Proc. of the 13th Solarpaces Int. Symp., Seville, Spain, 2006 Google Scholar
  111. 237.
    Mamdani, E.H.: Application of fuzzy algorithms for control of a simple dynamic plant. IEE Proc. Part D 121, 1585–1588 (1974) Google Scholar
  112. 239.
    Markou, H., Petropoulakis, L.: PID-type fuzzy control of the Acurex solar collector field. In: Martínez, D. (ed.) Proc. of the 2nd Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (2002) Google Scholar
  113. 241.
    Meaburn, A.: Modeling and control of a distributed solar collector field. PhD Thesis, Department of Electrical Engineering and Electronics, UMIST, UK (1995) Google Scholar
  114. 242.
    Meaburn, A., Hughes, F.M.: Resonance characteristics of distributed solar collector fields. Sol. Energy 51(3), 215–221 (1993) CrossRefGoogle Scholar
  115. 243.
    Meaburn, A., Hughes, F.M.: A control technique for resonance cancellation. In: Proc. of the IEE Colloquium on Nonlinear Control Using Structural Knowledge of System Models, London, UK, 1993 Google Scholar
  116. 244.
    Meaburn, A., Hughes, F.M.: Prescheduled adaptive control scheme for resonance cancellation of a distributed solar collector field. Sol. Energy 52(2), 155–166 (1994) CrossRefGoogle Scholar
  117. 245.
    Meaburn, A., Hughes, F.M.: A pre-scheduled adaptive control scheme based upon system knowledge. In: Proc. of the IEE Colloquium on Adaptive Controllers in Practice—Part One, London, UK, 1995 Google Scholar
  118. 246.
    Meaburn, A., Hughes, F.M.: A simple predictive controller for use on large scale arrays of parabolic trough collectors. Sol. Energy 56(6), 583–595 (1996) CrossRefGoogle Scholar
  119. 252.
    Messaoud, H., Favier, G., Mendes, R.S.: Adaptive robust pole placement by connecting robust identification and control. In: Proc. of the IFAC Symp. on Adaptive Systems in Control and Signal Processing, ACASP’92, Grenoble, France, 1992 Google Scholar
  120. 256.
    Mo, S.H., Norton, J.P.: Fast and robust algorithm to compute exact polytop parameter bounds. Math. Comput. Simul. 32, 481–493 (1990) MathSciNetCrossRefGoogle Scholar
  121. 260.
    Morari, M., Zafiriou, E.: Robust Process Control. Prentice Hall, New York (1989) Google Scholar
  122. 262.
    Mosca, E.: Optimal, Predictive and Adaptive Control. Prentice Hall, New York (1995) Google Scholar
  123. 264.
    Nenciari, G., Mosca, E.: Supervised multicontrollers for temperature regulation of a distributed collector field. In: Martínez, D. (ed.) Proc. of the 1st Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (1998) Google Scholar
  124. 269.
    Nordgren, R.E., Franchek, M.A.: New formulations for quantitative feedback theory. Int. J. Robust Nonlinear Control 4, 47–64 (1994) MATHMathSciNetCrossRefGoogle Scholar
  125. 270.
    Normey-Rico, J.E., Camacho, E.F.: Control of Dead-Time Processes. Springer, Berlin (2007) Google Scholar
  126. 271.
    Normey-Rico, J.E., Camacho, E.F.: Dead-time compensators: a survey. Control Eng. Pract. 16(4), 407–428 (2008) CrossRefGoogle Scholar
  127. 272.
    Normey-Rico, J.E., Camacho, E.F.: Unified approach for robust dead-time compensator design. J. Process Control 19(1), 38–47 (2008) CrossRefGoogle Scholar
  128. 273.
    Normey-Rico, J.E., Bordóns, C., Camacho, E.F.: Improving the robustness of dead-time compensating PI controllers. Control Eng. Pract. (6), 801–810 (1997) Google Scholar
  129. 274.
    Normey-Rico, J.E., Bordóns, C., Berenguel, M., Camacho, E.F.: A robust adaptive dead-time compensator with application to a solar collector field. In: Proc. of the IFAC Linear Time Delay Systems Workshop, Grenoble, France, 1998 Google Scholar
  130. 275.
    Nuñez-Reyes, A., Normey-Rico, J.E., Bordóns, C., Camacho, E.F.: A Smith predictive based MPC in a solar air conditioning plant. J. Process Control 15, 1–10 (2005) CrossRefGoogle Scholar
  131. 276.
    Ogata, K.: Modern Control Engineering, 5th edn. Pearson–Prentice Hall, Upper Saddle River–New York (2009) Google Scholar
  132. 277.
    Ogunnaike, B.A., Ray, W.H.: Process Dynamics, Modeling and Control. Academic Press, San Diego (1994) Google Scholar
  133. 278.
    Oksanen, P., Juuso, E.K.: Advanced control for solar systems at PSA. In: Proc. of TOOLMET99, Symp. Tool Environments and Development Methods for Intelligent Systems, Oulu, Finland, pp. 123–134 (1999) Google Scholar
  134. 280.
    Orbach, A., Rorres, C., Fischl, R.: Optimal control of a solar collector loop using a distributed-lumped model. Automatica 27(3), 535–539 (1981) CrossRefGoogle Scholar
  135. 282.
    Ortega, M.G., Rubio, F.R., Berenguel, M.: An H controller for a solar power plant. In: Proc. of the IASTED Int. Conf. on Control, Cancún, México, pp. 122–125 (1997) Google Scholar
  136. 285.
    Pasamontes, M., Álvarez, J.D., Guzmán, J.L., Lemos, J.M., Berenguel, M.: A switching control strategy applied to a solar collector field. Control Eng. Pract. 19, 135–145 (2011) CrossRefGoogle Scholar
  137. 286.
    Passino, K.M., Yurkovich, S.: Fuzzy Control. Addison-Wesley, Menlo Park (1998) Google Scholar
  138. 289.
    Pereira, C., Dourado, A.: Application of a neuro-fuzzy network with support vector learning to a solar power plant. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop IHP Programme, CIEMAT. CIEMAT, Madrid (2002) Google Scholar
  139. 290.
    Pereira, C., Dourado, A.: Application of a neuro-fuzzy network with support vector learning to a solar power plant. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, 2002 Google Scholar
  140. 291.
    Perez, R., Moore, K., Wilcox, S., Renne, D., Zelenka, A.: Forecasting solar radiation: preliminary evaluation of an approach based upon the national forecast database. Sol. Energy 81, 809–812 (2007) CrossRefGoogle Scholar
  141. 292.
    Pérez de la Parte, M., Cirre, C.M., Camacho, E.F., Berenguel, M.: Application of predictive sliding mode controllers to a solar plant. IEEE Trans. Control Syst. Technol. 16(4), 819–825 (2008) CrossRefGoogle Scholar
  142. 295.
    Pickhardt, R.: Application of adaptive controllers to a solar power plant using a multi-model description. In: Proc. of the American Control Conf., Albuquerque, NM, USA, 1998 Google Scholar
  143. 296.
    Pickhardt, R.: Adaptive control of a solar power plant using a multi-model control. IEE Proc. Part D 147(5), 493–500 (2000) Google Scholar
  144. 297.
    Pickhardt, R.: Nonlinear modeling and adaptive predictive control of a solar power plant. Control Eng. Pract. 8(8), 937–947 (2000) CrossRefGoogle Scholar
  145. 298.
    Pickhardt, R.: Results of the application of adaptive controllers to the Acurex field. In: Martínez, D. (ed.) Proc. of the 2nd Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (2003) Google Scholar
  146. 299.
    Pickhardt, R., Silva, R.N.: Application of a nonlinear predictive controller to a solar power plant. In: Proc. of the 1998 IEEE Int. Conf. on Control Applications, Glasgow, UK, vol. 1, pp. 6–10 (1998) Google Scholar
  147. 301.
    Pin, G., Falchetta, M., Fenu, G.: Adaptive time-warped control of molten salt distributed collector solar fields. Control Eng. Pract. 16, 813–823 (2008) CrossRefGoogle Scholar
  148. 307.
    Ratcliffe, J.D., Hatonen, J.J., Lewin, P.L., Rogers, E., Owens, D.H.: Repetitive control of synchronized operations for process applications. Int. J. Adapt. Control Signal Process. 21, 300–325 (2007) MATHMathSciNetCrossRefGoogle Scholar
  149. 308.
    Rato, L., Borelli, D., Mosca, E., Lemos, J.M., Balsa, P.: MUSMAR based switching control of a solar collector field. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, 1997 Google Scholar
  150. 309.
    Rato, L., Silva, R.N., Lemos, J.M., Coito, F.: Multirate MUSMAR cascade control of a distributed solar field. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, 1997 Google Scholar
  151. 310.
    Rato, L., Silva, R.N., Lemos, J.M., Coito, F.J.: INESC research on adaptive control of ACUREX field. In: Martínez, D. (ed.) Proc. of the 1st Users Group TMR Programme at Plataforma Solar de Almería, CIEMAT. CIEMAT, Madrid (1998) Google Scholar
  152. 315.
    Rivera, D.E., Morari, M., Skogestad, S.: Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev. 25, 252–265 (1986) CrossRefGoogle Scholar
  153. 318.
    Roca, L., Berenguel, M., Yebra, L., Alarcón-Padilla, D.: Solar field control for desalination plants. Sol. Energy 82, 772–786 (2008) CrossRefGoogle Scholar
  154. 319.
    Roca, L., Guzmán, J.L., Normey-Rico, J.E., Berenguel, M., Yebra, L.: Robust constrained predictive feedback linearization controller in a solar desalination plant collector field. Control Eng. Pract. 17, 1076–1088 (2009) CrossRefGoogle Scholar
  155. 325.
    Rorres, C., Orbach, A., Fischl, R.: Optimal and suboptimal control policies for a solar collector system. IEEE Trans. Autom. Control AC-25, 1085–1091 (1980) CrossRefGoogle Scholar
  156. 326.
    Rossiter, J.A.: Model-Based Predictive Control: A Practical Approach. CRC Press, Boca Raton (2003) Google Scholar
  157. 329.
    Rubio, F.R.: Adaptive control of industrial processes. Application to a solar plant. PhD Thesis, Universidad de Sevilla (1985) (in Spanish) Google Scholar
  158. 330.
    Rubio, F.R., López, M.J.: Control Adaptativo Y Robusto. Servicio de Publicaciones de la Universidad de Sevilla, Seville (1996) Google Scholar
  159. 331.
    Rubio, F.R., Carmona, R., Camacho, E.F.: Adaptive control of the Acurex field. In: Kesserlring, P., Selvage, C.S. (eds.) The IEA/SSPS Solar Thermal Power Plants, vol. 2. Springer, Berlin (1986) Google Scholar
  160. 332.
    Rubio, F.R., Hughes, F.M., Camacho, E.F.: Self-tuning PI control of a solar power plant. In: Prep. IFAC Symp. in Adaptive Systems in Control and Signal Processing, Glasgow, UK, pp. 335–340 (1989) Google Scholar
  161. 333.
    Rubio, F.R., Berenguel, M., Camacho, E.F.: Fuzzy logic control of a solar power plant. IEEE Trans. Fuzzy Syst. 3(4), 459–468 (1995) CrossRefGoogle Scholar
  162. 334.
    Rubio, F.R., Camacho, E.F., Berenguel, M.: Control de campos de colectores solares. Rev. Iberoam. Autom. Inform. Ind. 3(4), 26–45 (2006) Google Scholar
  163. 340.
    Seborg, D.E.: A perspective on advanced strategies for process control (revisited). In: Frank, P.M. (ed.) Advances in Control—Highlights of ECC’99. Springer, Berlin (1999) Google Scholar
  164. 341.
    Selvage, C.S.: The IEA/SSPS Solar Thermal Power Plants. Springer, Berlin (1986) Google Scholar
  165. 343.
    Shahmaleki, P., Mahzoon, M.: GA modeling and ANFIS control design for a solar power plant. In: Proc. of the 2010 American Control Conf., Baltimore, MD, USA, pp. 3530–3535 (2010) Google Scholar
  166. 344.
    Silva, R.N.: Dual predictive control of processes with accessible disturbances. PhD Thesis, Universidade Técnica de Lisboa, Portugal (1999) (in Portuguese) Google Scholar
  167. 345.
    Silva, R.N.: Model based predictive control with time-scaling of a solar field. In: Martínez, D. (ed.) Proc. of the 2nd Users Group TMR Programme at Plataforma Solar de Almería. CIEMAT, Madrid (1999) Google Scholar
  168. 346.
    Silva, R.N.: Time scaled predictive controller of a solar power plant. In: Proc. of the European Control Conf. 99, Karlsruhe, Germany, 1999 Google Scholar
  169. 347.
    Silva, R.N., Rato, L.M., Lemos, J.M., Coito, F.: Cascade control of a distributed collector solar field. J. Process Control 4(2), 111–117 (1997) CrossRefGoogle Scholar
  170. 348.
    Silva, R.N., Filatov, N., Lemos, J.M., Unbehauen, H.: Feedback/feedforward dual adaptive control of a solar collector field. In: Proc. of the IEEE Int. Conf. on Control Applications, Glasgow, UK, pp. 309–313 (1998) Google Scholar
  171. 349.
    Silva, R.N., Rato, L.M., Barão, L.M., Lemos, J.M.: A physical model based approach to distributed collector solar field control. In: Proc. of the American Control Conf., Anchorage, AK, USA, pp. 1822–3817 (2002) Google Scholar
  172. 351.
    Silva, R.N., Lemos, J.M., Rato, L.M.: Variable sampling adaptive control of a distributed collector solar field. IEEE Trans. Control Syst. Technol. 11(5), 765–772 (2003) CrossRefGoogle Scholar
  173. 352.
    Silva, R.N., Rato, L.M., Lemos, J.M.: Time scaling internal state predictive control of a solar plant. Control Eng. Pract. 11(12), 1459–1467 (2003) CrossRefGoogle Scholar
  174. 354.
    Slotine, J., Li, W.: Applied Nonlinear Control. Prentice Hall, New York (1991) MATHGoogle Scholar
  175. 358.
    Steinbuch, M.: Repetitive control for system with uncertain period-time. Automatica 38(12), 2103–2109 (2002) MATHMathSciNetCrossRefGoogle Scholar
  176. 360.
    Stirrup, R., Loebis, D., Chipperfield, A.J., Tang, K.S., Kwong, S., Man, K.F.: Gain-scheduled control of a solar power plant using a hierarchical MOGA-tuned fuzzy PI-controller. In: Proc. of ISIE 2001, the IEEE Int. Symp. on Industrial Electronics, Pusan, Korea, pp. 25–29 (2001) Google Scholar
  177. 366.
    Stuetzle, T., Blair, N., Mitchell, J.W., Beckman, A.: Automatic control of a 30 MWe SEGS VI parabolic trough plant. Sol. Energy 76, 187–193 (2004) CrossRefGoogle Scholar
  178. 367.
    Sudkamp, T., Hammell, R.J. II: Interpolation, completion, and learning fuzzy rules. IEEE Trans. Syst. Man Cybern. 24(2), 332–342 (1994) CrossRefGoogle Scholar
  179. 372.
    Torrico, B., Roca, L., Normey-Rico, J.E., Guzmán, J.L., Yebra, L.: Robust nonlinear predictive control applied to a solar collector field in a solar desalination plant. IEEE Trans. Control Syst. Technol. 18(6), 1430–1439 (2010) Google Scholar
  180. 380.
    Tzafestas, S., Papanikolopoulos, N.P.: Incremental fuzzy expert PID control. IEEE Trans. Ind. Electron. 37(5), 365–371 (1990) CrossRefGoogle Scholar
  181. 382.
    Valenzuela, L., Balsa, P.: Series and parallel feedforward control schemes to regulate the operation of a solar collector field. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (1998) Google Scholar
  182. 383.
    Valenzuela, L., Zarza, E., Berenguel, M., Camacho, E.F.: Control concepts for direct steam generation process in parabolic troughs. In: Proc. of the ISES Solar World Congress, Goteborg, Sweden, 2003 Google Scholar
  183. 384.
    Valenzuela, L., Zarza, E., Berenguel, M., Camacho, E.F.: Direct steam generation in solar boilers. IEEE Control Syst. Mag. 24(2), 15–29 (2004) CrossRefGoogle Scholar
  184. 388.
    van Willigenburg, L.G., Bontsema, J., Koning, W.L.D., Valenzuela, L., Cirre, C.M.: Direct reduced-order digital control of a solar collector field. In: Martínez, D. (ed.) Proc. of the IHP Programme. Research Results at PSA Within the Year 2003 Access Campaign. CIEMAT. CIEMAT, Madrid (2004) Google Scholar
  185. 389.
    van Willigenburg, L.G., Bontsema, J., Koning, W.L.D., Valenzuela, L., Cirre, C.M.: Digital optimal reduced-order control of a solar power plant. In: Proc. of UKACC-IEE CONTROL 2004, University of Bath, UK, 2004 Google Scholar
  186. 391.
    Vaz, F., Oliveira, R., Silva, R.N.: PID control of a solar plant with gain interpolation. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (1998) Google Scholar
  187. 392.
    Veres, S.M., Norton, J.P.: Predictive self-tuning control by parameter bounding and worst-case design. Automatica 29(4), 911–928 (1993) MATHMathSciNetCrossRefGoogle Scholar
  188. 397.
    Wellstead, P.E., Prager, D., Zanker, P.: A pole assignment self-tuning regulator. IEE Proc. Part D 126-128, 781–787 (1978) Google Scholar
  189. 416.
    Zarza, E., Valenzuela, L., León, J., Hennecke, K., Eck, M., Weyers, H.D., Eickhoff, M.: The DISS project: direct steam generation in parabolic troughs. Operation and maintenance experience & update on project status. In: Proc. of ASME Int. Solar Energy Conf.: Forum 2001, Washington, DC, USA, 2001 Google Scholar
  190. 419.
    Zarza, E., Valenzuela, L., León, J., Weyers, H.D., Eickhoff, M., Eck, M., Hennecke, K.: Direct steam generation in parabolic troughs: final results and conclusions of the DISS project. Energy 29, 635–644 (2004) CrossRefGoogle Scholar
  191. 423.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64, 759–768 (1942) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Eduardo F. Camacho
    • 1
  • Manuel Berenguel
    • 2
  • Francisco R. Rubio
    • 1
  • Diego Martínez
    • 3
  1. 1.Departamento de Ingeniería de Sistemas y Automática, Escuela Superior de IngenierosUniversidad de SevillaSevilleSpain
  2. 2.Departamento de Lenguajes y Computación, Escuela Superior de IngenieríaUniversidad de AlmeríaAlmeríaSpain
  3. 3.Plataforma Solar de Almería, Centro Europeo de Ensayos de Energía SolarCIEMATTabernasSpain

Personalised recommendations