Advertisement

Basic Control of Parabolic Troughs

  • Eduardo F. Camacho
  • Manuel Berenguel
  • Francisco R. Rubio
  • Diego Martínez
Part of the Advances in Industrial Control book series (AIC)

Abstract

The chapter outlines the main features of the different modeling and basic control approaches used during the last 25 years to control the distributed collector systems (DCS). The DCS may be described by a distributed parameter model of the temperature. It is widely recognized that the performance of PI and PID type controllers will be inferior to model-based approaches. Even when the plant is linearized about some operation point and approximated by a finite-dimensional model, the frequency response contains resonance modes near the bandwidth that must be taken into consideration in the controller in order to achieve high performance. Thus, the “ideal” controller should be high-order and non-linear. The simplest control techniques are outlined in this chapter; others with high complexity are studied in the following one, looking for a trade-off between commissioning time and performance.

As the main example of the new generation of solar trough plants, the DISS project has demonstrated that it is possible to directly produce high-pressure high-temperature steam in parabolic trough solar collectors. A leading plant using this type of technology has been operated in two different modes. Using a scheme based on PI and feedforward controllers, the controllability of the plant is guaranteed on clear days and even during short transients in the solar radiation. Longer transients in solar radiation make it difficult to maintain the steam temperature in favor of guaranteeing a minimum flow in the field to avoid high-temperature gradients in the cross-sectional area of the pipes when the solar radiation level recovers. A structure partially based on classical controllers was chosen because the plant operators are familiar with this type of controller and are able to adapt the controller parameters in the face of situations affecting plant dynamics and controller performance, such as modifications in plant layout or system changes over time. The control structure developed has demonstrated the technical controllability of the system.

Keywords

Outlet Temperature Heat Transfer Fluid Feedforward Controller Distribute Parameter Model Solar Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 8.
    Álvarez, J.D., Yebra, L.J., Berenguel, M.: Repetitive control of tubular heat exchangers. J. Process Control 17(9), 689–701 (2007) CrossRefGoogle Scholar
  2. 11.
    Álvarez, J.D., Yebra, L.J., Berenguel, M.: Adaptive repetitive control for resonance cancellation of a distributed solar collector field. Int. J. Adapt. Control Signal Process. 23, 331–352 (2009) CrossRefMATHGoogle Scholar
  3. 12.
    Álvarez, J.D., Costa-Castelló, R., Berenguel, M., Yebra, L.J.: A repetitive control scheme for distributed solar collector field. Int. J. Control 83(5), 970–982 (2010) CrossRefMATHGoogle Scholar
  4. 15.
    Arahal, M.R.: Identification and control using neural networks. PhD Thesis, University of Seville, Seville, Spain (1996) (in Spanish) Google Scholar
  5. 16.
    Arahal, M.R., Berenguel, M., Camacho, E.F.: Nonlinear neural model-based predictive control of a solar plant. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, vol. TH-E I2, 1997 Google Scholar
  6. 17.
    Arahal, M.R., Berenguel, M., Camacho, E.F.: Comparison of RBF algorithms for output temperature prediction of a solar plant. In: Proc. of CONTROLO’98, Coimbra, Portugal, 1998 Google Scholar
  7. 18.
    Arahal, M.R., Berenguel, M., Camacho, E.F.: Neural identification applied to predictive control of a solar plant. Control Eng. Pract., 333–344 (1998) Google Scholar
  8. 24.
    Åström, K.J., Wittenmark, B.: Computer Controlled Systems. Theory and Design. Prentice Hall, New York (1984) Google Scholar
  9. 28.
    Barão, M.: Dynamics and nonlinear control of a solar collector field. PhD Thesis, Universidade Tecnica de Lisboa, Instituto Superior Tecnico, Lisbon, Portugal (2000) Google Scholar
  10. 29.
    Barão, M., Lemos, J.M., Silva, R.N.: Reduced complexity adaptive nonlinear control of a distributed collector solar field. J. Process Control 12(1), 131–141 (2002) CrossRefGoogle Scholar
  11. 34.
    Berenguel, M.: Contributions to the control of distributed solar collectors. PhD Thesis, Universidad de Sevilla, Spain (1996) (in Spanish) Google Scholar
  12. 35.
    Berenguel, M.: Some control applications to solar plants. In: Proc. of the Int. Workshop on Constrained Control Systems, DAS-CTC-UFSC-NECCOSYDE, Florianópolis, SC, Brazil, 1998 Google Scholar
  13. 38.
    Berenguel, M., Camacho, E.F., Rubio, F.R.: Simulation software package for the Acurex field. Internal Report, Dpto. de Ingeniería de Sistemas y Automática, ESI Sevilla, Spain. www.esi2.us.es/~rubio/libro2.html (1994)
  14. 40.
    Berenguel, M., Arahal, M.R., Camacho, E.F.: Modeling free response of a solar plant for predictive control. In: Proc. of the 11th IFAC Symp. on Systems Identification, SYSID’97, Fukuoka, Japan, pp. 1291–1296 (1997) Google Scholar
  15. 41.
    Berenguel, M., Camacho, E.F., Rubio, F.R., Luk, P.C.K.: Incremental fuzzy PI control of a solar power plant. IEE Proc. Part D 144(6), 596–604 (1997) MATHGoogle Scholar
  16. 42.
    Berenguel, M., Arahal, M.R., Camacho, E.F.: Modeling free response of a solar plant for predictive control. Control Eng. Pract. 6, 1257–1266 (1998) CrossRefGoogle Scholar
  17. 44.
    Berenguel, M., Rubio, F.R., Camacho, E.F., Gordillo, F.: Techniques and applications of fuzzy logic control of solar power plants. In: Leondes, C.T. (ed.) Fuzzy Theory Systems Techniques and Applications, vol. 2. Academic Press, San Diego (1999) (Chap. 25) Google Scholar
  18. 60.
    Bonilla, J., Yebra, L.J., Dormido, S.: A heuristic method to minimise the chattering problem in dynamic mathematical two-phase flow models. Math. Comput. Model. 54(5–6), 1549–1560 (2011) CrossRefMATHMathSciNetGoogle Scholar
  19. 69.
    Brosilow, C., Joseph, B.: Techniques of Model-Based Control. Prentice Hall, New York (2002) Google Scholar
  20. 70.
    Brus, L., Zambrano, D.: Black-box identification of solar collector dynamics with variant time delay. Control Eng. Pract. 18, 1133–1146 (2010) CrossRefGoogle Scholar
  21. 73.
    Camacho, E.F.: Constrained generalized predictive control. IEEE Trans. Autom. Control 38(2), 327–332 (1993) CrossRefMATHMathSciNetGoogle Scholar
  22. 75.
    Camacho, E.F., Berenguel, M.: Application of generalized predictive control to a solar power plant. In: Clarke, D.W. (ed.) Advances in Model-Based Predictive Control. Oxford University Press, London (1994) Google Scholar
  23. 76.
    Camacho, E.F., Berenguel, M.: Application of generalized predictive control to a solar power plant. In: Proc. of the Third IEEE Conf. on Control Applications, Glasgow, UK, pp. 1657–1662 (1994) CrossRefGoogle Scholar
  24. 77.
    Camacho, E.F., Berenguel, M.: Robust adaptive model predictive control of a solar plant with bounded uncertainties. Int. J. Adapt. Control Signal Process. 11(4), 311–325 (1997) CrossRefMATHMathSciNetGoogle Scholar
  25. 81.
    Camacho, E.F., Rubio, F.R., Gutiérrez, J.A.: Modelling and simulation of a solar power plant with a distributed collector system. In: Proc. of the Int. IFAC Symp. on Power Systems Modelling and Control Applications, Brussels, Belgium, 1988 Google Scholar
  26. 82.
    Camacho, E.F., Rubio, F.R., Hughes, F.M.: Self-tuning control of a solar power plant with a distributed collector field. IEEE Control Syst. Mag., 72–78 (1992) Google Scholar
  27. 83.
    Camacho, E.F., Berenguel, M., Bordóns, C.: Adaptive generalized predictive control of a distributed collector field. IEEE Trans. Control Syst. Technol. 2(4), 462–467 (1994) CrossRefGoogle Scholar
  28. 84.
    Camacho, E.F., Berenguel, M., Rubio, F.R.: Application of a gain scheduling generalized predictive controller to a solar power plant. Control Eng. Pract. 2(2), 227–238 (1994) CrossRefGoogle Scholar
  29. 85.
    Camacho, E.F., Berenguel, M., Rubio, F.R.: Advanced Control of Solar Plants. Springer, Berlin (1997) CrossRefGoogle Scholar
  30. 87.
    Camacho, E.F., Rubio, F.R., Berenguel, M., Valenzuela, L.: A survey on control schemes for distributed solar collector fields. Part I: Modeling and basic control approaches. Sol. Energy 81, 1240–1251 (2007) CrossRefGoogle Scholar
  31. 88.
    Camacho, E.F., Rubio, F.R., Berenguel, M., Valenzuela, L.: A survey on control schemes for distributed solar collector fields. Part II: Advanced control approaches. Sol. Energy 81, 1252–1272 (2007) CrossRefGoogle Scholar
  32. 94.
    Cardoso, A.L., Henriques, J., Dourado, A.: Fuzzy supervisor and feedforward control of a solar power plant using accessible disturbances. In: Proc. of the European Control Conf., ECC’99, Karlsruhe, Germany, 1999 Google Scholar
  33. 97.
    Carmona, R.: Modeling and control of a distributed solar collector field with a one-axis tracking system. PhD Thesis, University of Seville, Spain (1985) (in Spanish) Google Scholar
  34. 98.
    Carmona, R., Aranda, J.M., Silva, M., Andújar, J.M.: Regulation and automation of the SSPS-DCS ACUREX field of the PSA. Report No. R-15/87, PSA (1987) Google Scholar
  35. 99.
    Carotenuto, L., Cava, M.L., Raiconi, G.: Regular design for the bilinear distributed parameter of a solar power plant. Int. J. Syst. Sci. 16, 885–900 (1985) CrossRefMATHGoogle Scholar
  36. 100.
    Carotenuto, L., Cava, M.L., Muraca, P., Raiconi, G.: Feedforward control for the distributed parameter model of a solar power plant. Large Scale Syst. 11, 233–241 (1986) MATHGoogle Scholar
  37. 104.
    Cirre, C.M., Moreno, J.C., Berenguel, M.: Robust QFT control of a solar collectors field. In: Martínez, D. (ed.) IHP Programme. Research Results at PSA Within the Year 2002 Access Campaign. CIEMAT, Madrid (2003) Google Scholar
  38. 105.
    Cirre, C.M., Valenzuela, L., Berenguel, M., Camacho, E.F.: A control strategy integrating automatic setpoint generation and feedforward control for a distributed solar collector field. In: Proc. XIV Jornadas de Automática, León, Spain, 2004 (in Spanish) Google Scholar
  39. 106.
    Cirre, C.M., Valenzuela, L., Berenguel, M., Camacho, E.F.: Control de plantas solares con generación automática de consignas. Rev. Iberoam. Autom. Inform. Ind. 1, 56–66 (2004) Google Scholar
  40. 107.
    Cirre, C.M., Valenzuela, L., Berenguel, M., Camacho, E.F.: Feedback linearization control for a distributed solar collector field. In: Proc. of the 16th IFAC World Congress, Prague, Czech Republic, 2005 Google Scholar
  41. 109.
    Cirre, C.M., Berenguel, M., Valenzuela, L., Camacho, E.F.: Feedback linearization control for a distributed solar collector field. Control Eng. Pract. 15, 1533–1544 (2007) CrossRefGoogle Scholar
  42. 111.
    Cirre, C.M., Moreno, J.C., Berenguel, M., Guzmán, J.L.: Robust control of solar plants with distributed collectors. In: Proc. of the 2010 IFAC Int. Symp. on Dynamics and Control of Process Systems, DYCOPS 2010, Leuven, Belgium, 2010, Paper ID: 103 Google Scholar
  43. 113.
    Clarke, D.W., Mohtadi, C., Tuffs, P.S.: Generalized predictive control—Part I. The basic algorithm. Automatica 23(2), 137–148 (1987) CrossRefMATHGoogle Scholar
  44. 115.
    Cohen, W.C., Johnston, E.F.: Dynamic characteristics of double-pipe heat exchangers. Ind. Eng. Chem. 48, 1031–1034 (1956) CrossRefGoogle Scholar
  45. 127.
    Dynasim, A.B.: Dymola 5.3 User Manual. http://www.dynasim.se (2004)
  46. 128.
    Eborn, J.: On model libraries for thermo-hydraulic applications. PhD Thesis, Department of Automatic Control, Lund Institute of Technology, Sweden (2001) Google Scholar
  47. 129.
    Eck, M., Eberl, M.: Controller design for injection mode driven direct solar steam generating parabolic trough collectors. In: Proc. of the ISES Solar World Congress 1999, Jerusalem, Israel, vol. I, pp. 247–257 (1999) CrossRefGoogle Scholar
  48. 133.
    España, M.D., Rodríguez, V.L.: Approximate steady-state modeling of a solar trough collector. Sol. Energy 37(6), 447–545 (1987) CrossRefGoogle Scholar
  49. 135.
    Farkas, I., Vajk, I.: Experiments with internal model-based controller for Acurex field. In: Martínez, D. (ed.) Proc. of the 2nd Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (2002) Google Scholar
  50. 136.
    Farkas, I., Vajk, I.: Internal model-based controller for a solar plant. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, 2002 Google Scholar
  51. 137.
    Farkas, I., Vajk, I.: Modeling and control of a distributed solar collector field. In: Proc. of the Energy and Environment Congress, Opatija, Croatia, 2002 Google Scholar
  52. 138.
    Farkas, I., Vajk, I.: Experiments with robust internal model-based controller for Acurex field. In: Martínez, D. (ed.) IHP Programme. Research Results at PSA Within the Year 2002 Access Campaign. CIEMAT, Madrid (2003) Google Scholar
  53. 178.
    Henriques, J., Cardoso, A., Dourado, A.: Supervision and c-Means clustering of PID controllers for a solar power plant. Int. J. Approx. Reason. 22(1–2), 73–91 (1999) CrossRefMATHMathSciNetGoogle Scholar
  54. 179.
    Henriques, J., Gil, P., Dourado, A.: Neural output regulation for a solar power plant. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, 2002 Google Scholar
  55. 186.
    Igreja, J.M., Lemos, J.M., Barão, M., Silva, R.N.: Adaptive nonlinear control of a distributed collector solar field. In: Proc. of the European Control Conf., ECC’03, Cambridge, UK, 2003 Google Scholar
  56. 187.
    Ionescu, C., Wyns, B., Sbarciog, M., Boullart, L., De Keyser, R.: Comparison between physical modeling and neural network modeling of a solar power plant. In: Proc. of the IASTED Int. Conf. on Applied Simulation and Modeling, ASM’04, Rhodes, Greece, 2004 Google Scholar
  57. 195.
    Johansen, T.A., Storaa, C.: An internal energy controller for distributed solar collector fields. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop IHP Programme, CIEMAT. CIEMAT, Madrid (2002) Google Scholar
  58. 196.
    Johansen, T.A., Storaa, C.: Energy-based control of a distributed solar collector field. Automatica 38(7), 1191–1199 (2002) CrossRefMATHMathSciNetGoogle Scholar
  59. 197.
    Johansen, T.A., Hunt, K.J., Petersen, I.: Gain-scheduled control of a solar power plant. Control Eng. Pract. 8(9), 1011–1022 (2000) CrossRefGoogle Scholar
  60. 203.
    Kalogirou, S.A.: Applications of artificial neural-networks for energy systems. Appl. Energy 67, 17–35 (2000) CrossRefGoogle Scholar
  61. 204.
    Kalogirou, S.A.: Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev. 5, 373–401 (2001) CrossRefGoogle Scholar
  62. 206.
    Kalt, A.: Distributed Collector System Plant Construction Report. IEA/SSPS Operating Agent DFVLR, Cologne (1982) Google Scholar
  63. 208.
    Ke, J.Y., Tang, K.S., Man, K.F., Luk, P.C.K.: Hierarchical genetic fuzzy controller for a solar power plant. In: Proc. of the IEEE Int. Symp. on Industrial Electronics, ISIE’98, South Africa, pp. 584–588 (1998) Google Scholar
  64. 213.
    Klein, A.A., Duffie, J.A., Beckman, W.A.: Transient considerations of flat-plate solar collectors. Trans. ASME J. Eng. Power 96A, 109–110 (1974) CrossRefGoogle Scholar
  65. 230.
    Ljung, L.: System Identification, Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999) Google Scholar
  66. 234.
    Luk, P.C.K., Low, K.C., Sayiah, A.: GA-based fuzzy logic control of a solar power plant using distributed collector fields. Renew. Energy 16(1–4), 765–768 (1999) CrossRefGoogle Scholar
  67. 239.
    Markou, H., Petropoulakis, L.: PID-type fuzzy control of the Acurex solar collector field. In: Martínez, D. (ed.) Proc. of the 2nd Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (2002) Google Scholar
  68. 241.
    Meaburn, A.: Modeling and control of a distributed solar collector field. PhD Thesis, Department of Electrical Engineering and Electronics, UMIST, UK (1995) Google Scholar
  69. 242.
    Meaburn, A., Hughes, F.M.: Resonance characteristics of distributed solar collector fields. Sol. Energy 51(3), 215–221 (1993) CrossRefGoogle Scholar
  70. 243.
    Meaburn, A., Hughes, F.M.: A control technique for resonance cancellation. In: Proc. of the IEE Colloquium on Nonlinear Control Using Structural Knowledge of System Models, London, UK, 1993 Google Scholar
  71. 245.
    Meaburn, A., Hughes, F.M.: A pre-scheduled adaptive control scheme based upon system knowledge. In: Proc. of the IEE Colloquium on Adaptive Controllers in Practice—Part One, London, UK, 1995 Google Scholar
  72. 247.
    Meaburn, A., Hughes, F.M.: Feedforward control of solar thermal power plants. Trans. ASME J. Sol. Energy Eng. 119(1), 52–61 (1997) CrossRefGoogle Scholar
  73. 257.
    Modelica Association: Modelica, a unified object oriented language for physical systems modeling. Language specification 2.2. Technical Report. http://www.modelica.org (2005)
  74. 264.
    Nenciari, G., Mosca, E.: Supervised multicontrollers for temperature regulation of a distributed collector field. In: Martínez, D. (ed.) Proc. of the 1st Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (1998) Google Scholar
  75. 274.
    Normey-Rico, J.E., Bordóns, C., Berenguel, M., Camacho, E.F.: A robust adaptive dead-time compensator with application to a solar collector field. In: Proc. of the IFAC Linear Time Delay Systems Workshop, Grenoble, France, 1998 Google Scholar
  76. 280.
    Orbach, A., Rorres, C., Fischl, R.: Optimal control of a solar collector loop using a distributed-lumped model. Automatica 27(3), 535–539 (1981) CrossRefGoogle Scholar
  77. 287.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Series in Computational and Physical Processes in Mechanics and Thermal Sciences. Taylor & Francis, London (1980) MATHGoogle Scholar
  78. 289.
    Pereira, C., Dourado, A.: Application of a neuro-fuzzy network with support vector learning to a solar power plant. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop IHP Programme, CIEMAT. CIEMAT, Madrid (2002) Google Scholar
  79. 290.
    Pereira, C., Dourado, A.: Application of a neuro-fuzzy network with support vector learning to a solar power plant. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, 2002 Google Scholar
  80. 292.
    Pérez de la Parte, M., Cirre, C.M., Camacho, E.F., Berenguel, M.: Application of predictive sliding mode controllers to a solar plant. IEEE Trans. Control Syst. Technol. 16(4), 819–825 (2008) CrossRefGoogle Scholar
  81. 295.
    Pickhardt, R.: Application of adaptive controllers to a solar power plant using a multi-model description. In: Proc. of the American Control Conf., Albuquerque, NM, USA, 1998 Google Scholar
  82. 296.
    Pickhardt, R.: Adaptive control of a solar power plant using a multi-model control. IEE Proc. Part D 147(5), 493–500 (2000) Google Scholar
  83. 297.
    Pickhardt, R.: Nonlinear modeling and adaptive predictive control of a solar power plant. Control Eng. Pract. 8(8), 937–947 (2000) CrossRefGoogle Scholar
  84. 298.
    Pickhardt, R.: Results of the application of adaptive controllers to the Acurex field. In: Martínez, D. (ed.) Proc. of the 2nd Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (2003) Google Scholar
  85. 308.
    Rato, L., Borelli, D., Mosca, E., Lemos, J.M., Balsa, P.: MUSMAR based switching control of a solar collector field. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, 1997 Google Scholar
  86. 309.
    Rato, L., Silva, R.N., Lemos, J.M., Coito, F.: Multirate MUSMAR cascade control of a distributed solar field. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, 1997 Google Scholar
  87. 313.
    Rhodes, C., Morari, M.: Determining the model order of nonlinear input/output systems directly from data. In: Proc. of the American Control Conf., Seattle, WA, pp. 1290–1295 (1995) Google Scholar
  88. 314.
    Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proc. of the European Symp. on Artificial Neural Networks, ESANN’93, Brussels, Belgium, pp. 917–922 (1993) Google Scholar
  89. 318.
    Roca, L., Berenguel, M., Yebra, L., Alarcón-Padilla, D.: Solar field control for desalination plants. Sol. Energy 82, 772–786 (2008) CrossRefGoogle Scholar
  90. 319.
    Roca, L., Guzmán, J.L., Normey-Rico, J.E., Berenguel, M., Yebra, L.: Robust constrained predictive feedback linearization controller in a solar desalination plant collector field. Control Eng. Pract. 17, 1076–1088 (2009) CrossRefGoogle Scholar
  91. 325.
    Rorres, C., Orbach, A., Fischl, R.: Optimal and suboptimal control policies for a solar collector system. IEEE Trans. Autom. Control AC-25, 1085–1091 (1980) CrossRefGoogle Scholar
  92. 329.
    Rubio, F.R.: Adaptive control of industrial processes. Application to a solar plant. PhD Thesis, Universidad de Sevilla (1985) (in Spanish) Google Scholar
  93. 331.
    Rubio, F.R., Carmona, R., Camacho, E.F.: Adaptive control of the Acurex field. In: Kesserlring, P., Selvage, C.S. (eds.) The IEA/SSPS Solar Thermal Power Plants, vol. 2. Springer, Berlin (1986) Google Scholar
  94. 332.
    Rubio, F.R., Hughes, F.M., Camacho, E.F.: Self-tuning PI control of a solar power plant. In: Prep. IFAC Symp. in Adaptive Systems in Control and Signal Processing, Glasgow, UK, pp. 335–340 (1989) Google Scholar
  95. 333.
    Rubio, F.R., Berenguel, M., Camacho, E.F.: Fuzzy logic control of a solar power plant. IEEE Trans. Fuzzy Syst. 3(4), 459–468 (1995) CrossRefGoogle Scholar
  96. 334.
    Rubio, F.R., Camacho, E.F., Berenguel, M.: Control de campos de colectores solares. Rev. Iberoam. Autom. Inform. Ind. 3(4), 26–45 (2006) Google Scholar
  97. 339.
    Sbarciog, M., Wyns, B., Ionescu, C., Keyser, R.D., Boullart, L.: Neural networks models for a solar plant. In: Proc. of the 2nd IASTED Conf. on Neural Networks and Computational Intelligence, NCI2004, Grindelwald, Switzerland, 2004 Google Scholar
  98. 340.
    Seborg, D.E.: A perspective on advanced strategies for process control (revisited). In: Frank, P.M. (ed.) Advances in Control—Highlights of ECC’99. Springer, Berlin (1999) Google Scholar
  99. 347.
    Silva, R.N., Rato, L.M., Lemos, J.M., Coito, F.: Cascade control of a distributed collector solar field. J. Process Control 4(2), 111–117 (1997) CrossRefGoogle Scholar
  100. 348.
    Silva, R.N., Filatov, N., Lemos, J.M., Unbehauen, H.: Feedback/feedforward dual adaptive control of a solar collector field. In: Proc. of the IEEE Int. Conf. on Control Applications, Glasgow, UK, pp. 309–313 (1998) Google Scholar
  101. 349.
    Silva, R.N., Rato, L.M., Barão, L.M., Lemos, J.M.: A physical model based approach to distributed collector solar field control. In: Proc. of the American Control Conf., Anchorage, AK, USA, pp. 1822–3817 (2002) Google Scholar
  102. 350.
    Silva, R.N., Rato, L.M., Lemos, J.M.: Observer based time warped control of distributed collector solar fields. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop IHP Programme, CIEMAT. CIEMAT, Madrid (2002) Google Scholar
  103. 351.
    Silva, R.N., Lemos, J.M., Rato, L.M.: Variable sampling adaptive control of a distributed collector solar field. IEEE Trans. Control Syst. Technol. 11(5), 765–772 (2003) CrossRefGoogle Scholar
  104. 352.
    Silva, R.N., Rato, L.M., Lemos, J.M.: Time scaling internal state predictive control of a solar plant. Control Eng. Pract. 11(12), 1459–1467 (2003) CrossRefGoogle Scholar
  105. 354.
    Slotine, J., Li, W.: Applied Nonlinear Control. Prentice Hall, New York (1991) MATHGoogle Scholar
  106. 360.
    Stirrup, R., Loebis, D., Chipperfield, A.J., Tang, K.S., Kwong, S., Man, K.F.: Gain-scheduled control of a solar power plant using a hierarchical MOGA-tuned fuzzy PI-controller. In: Proc. of ISIE 2001, the IEEE Int. Symp. on Industrial Electronics, Pusan, Korea, pp. 25–29 (2001) Google Scholar
  107. 377.
    Tummescheit, H.: Design and implementation of object-oriented model libraries using modelica. PhD Thesis, Department of Automatic Control, Lund Institute of Technology, Sweden (2002) Google Scholar
  108. 382.
    Valenzuela, L., Balsa, P.: Series and parallel feedforward control schemes to regulate the operation of a solar collector field. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (1998) Google Scholar
  109. 384.
    Valenzuela, L., Zarza, E., Berenguel, M., Camacho, E.F.: Direct steam generation in solar boilers. IEEE Control Syst. Mag. 24(2), 15–29 (2004) CrossRefGoogle Scholar
  110. 385.
    Valenzuela, L., Zarza, E., Berenguel, M., Camacho, E.F.: Control concepts for direct steam generation in parabolic troughs. Sol. Energy 78, 301–311 (2005) CrossRefGoogle Scholar
  111. 386.
    Valenzuela, L., Zarza, E., Berenguel, M., Camacho, E.F.: Control schemes for direct steam generation in parabolic solar collectors under recirculation operation mode. Sol. Energy 80, 1–17 (2005) CrossRefGoogle Scholar
  112. 388.
    van Willigenburg, L.G., Bontsema, J., Koning, W.L.D., Valenzuela, L., Cirre, C.M.: Direct reduced-order digital control of a solar collector field. In: Martínez, D. (ed.) Proc. of the IHP Programme. Research Results at PSA Within the Year 2003 Access Campaign. CIEMAT. CIEMAT, Madrid (2004) Google Scholar
  113. 389.
    van Willigenburg, L.G., Bontsema, J., Koning, W.L.D., Valenzuela, L., Cirre, C.M.: Digital optimal reduced-order control of a solar power plant. In: Proc. of UKACC-IEE CONTROL 2004, University of Bath, UK, 2004 Google Scholar
  114. 391.
    Vaz, F., Oliveira, R., Silva, R.N.: PID control of a solar plant with gain interpolation. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (1998) Google Scholar
  115. 393.
    Wagner, W., Kruse, A.: Properties of Water and Steam. Springer, Berlin (1998) Google Scholar
  116. 400.
    Wyns, B., Sbarciog, M., Ionescu, C., Boullart, L., De Keyser, R.: Neural network modeling versus physical modeling application to a solar power plant. In: Martínez, D. (ed.) Proc. of the IHP Programme. Research Results at PSA Within the Year 2003 Access Campaign, CIEMAT. CIEMAT, Madrid (2004) Google Scholar
  117. 404.
    Yebra, L.J., Berenguel, M., Dormido, S.: Extended moving boundary models for two-phase flows. In: Proc. of the 16th IFAC World Congress, Prague, Czech Republic, 2005 Google Scholar
  118. 406.
    Yebra, L.J., Berenguel, M., Dormido, S., Zarza, E.: Object oriented modelling and simulation of parabolic trough collectors with Modelica. Math. Comput. Model. Dyn. Syst. 14(4), 361–375 (2008) CrossRefMATHGoogle Scholar
  119. 407.
    Yebra, L.J., Berenguel, M., Bonilla, J., Roca, L., Dormido, S., Zarza, E.: Object oriented modelling and simulation of Acurex solar thermal power plant. In: Proc. of MathMod09, Vienna, Austria, 2009 Google Scholar
  120. 408.
    Yebra, L.J., Berenguel, M., Bonilla, J., Roca, L., Dormido, S., Zarza, E.: Object-oriented modelling and simulation of ACUREX solar thermal power plant. Math. Comput. Model. Dyn. Syst. 16(3), 211–224 (2010) CrossRefMATHGoogle Scholar
  121. 416.
    Zarza, E., Valenzuela, L., León, J., Hennecke, K., Eck, M., Weyers, H.D., Eickhoff, M.: The DISS project: direct steam generation in parabolic troughs. Operation and maintenance experience & update on project status. In: Proc. of ASME Int. Solar Energy Conf.: Forum 2001, Washington, DC, USA, 2001 Google Scholar
  122. 417.
    Zarza, E., Valenzuela, L., León, J., Hennecke, K., Weyers, H.D., Eickhoff, M.: Direct steam generation in parabolic troughs. Final results and conclusions of the DISS project. In: Proc. of the 11th SolarPaces Int. Symp. on Concentrated Solar Power and Chemical Energy Technologies, Zurich, Switzerland, 2002 Google Scholar
  123. 418.
    Zarza, E., Valenzuela, L., León, J., Hennecke, K., Eck, M., Weyers, H.D., Eickhoff, M.: The DISS project: direct steam generation in parabolic trough systems. Operation & maintenance experience and update on project status. J. Sol. Energy Eng. Trans. ASME 124, 126–133 (2004) CrossRefGoogle Scholar
  124. 423.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64, 759–768 (1942) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Eduardo F. Camacho
    • 1
  • Manuel Berenguel
    • 2
  • Francisco R. Rubio
    • 1
  • Diego Martínez
    • 3
  1. 1.Departamento de Ingeniería de Sistemas y Automática, Escuela Superior de IngenierosUniversidad de SevillaSevilleSpain
  2. 2.Departamento de Lenguajes y Computación, Escuela Superior de IngenieríaUniversidad de AlmeríaAlmeríaSpain
  3. 3.Plataforma Solar de Almería, Centro Europeo de Ensayos de Energía SolarCIEMATTabernasSpain

Personalised recommendations