Skip to main content

Basic Control of Parabolic Troughs

  • Chapter
Book cover Control of Solar Energy Systems

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

The chapter outlines the main features of the different modeling and basic control approaches used during the last 25 years to control the distributed collector systems (DCS). The DCS may be described by a distributed parameter model of the temperature. It is widely recognized that the performance of PI and PID type controllers will be inferior to model-based approaches. Even when the plant is linearized about some operation point and approximated by a finite-dimensional model, the frequency response contains resonance modes near the bandwidth that must be taken into consideration in the controller in order to achieve high performance. Thus, the “ideal” controller should be high-order and non-linear. The simplest control techniques are outlined in this chapter; others with high complexity are studied in the following one, looking for a trade-off between commissioning time and performance.

As the main example of the new generation of solar trough plants, the DISS project has demonstrated that it is possible to directly produce high-pressure high-temperature steam in parabolic trough solar collectors. A leading plant using this type of technology has been operated in two different modes. Using a scheme based on PI and feedforward controllers, the controllability of the plant is guaranteed on clear days and even during short transients in the solar radiation. Longer transients in solar radiation make it difficult to maintain the steam temperature in favor of guaranteeing a minimum flow in the field to avoid high-temperature gradients in the cross-sectional area of the pipes when the solar radiation level recovers. A structure partially based on classical controllers was chosen because the plant operators are familiar with this type of controller and are able to adapt the controller parameters in the face of situations affecting plant dynamics and controller performance, such as modifications in plant layout or system changes over time. The control structure developed has demonstrated the technical controllability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The frequency response corresponds to the system constituted by the feedforward studied in Sect. 4.4.1 in series with the plant.

  2. 2.

    If the feedforward analyzed in Sect. 4.4.1 is placed in series with the plant, the control signal will be the reference temperature to the feedforward controller.

References

  1. Álvarez, J.D., Yebra, L.J., Berenguel, M.: Repetitive control of tubular heat exchangers. J. Process Control 17(9), 689–701 (2007)

    Article  Google Scholar 

  2. Álvarez, J.D., Yebra, L.J., Berenguel, M.: Adaptive repetitive control for resonance cancellation of a distributed solar collector field. Int. J. Adapt. Control Signal Process. 23, 331–352 (2009)

    Article  MATH  Google Scholar 

  3. Álvarez, J.D., Costa-Castelló, R., Berenguel, M., Yebra, L.J.: A repetitive control scheme for distributed solar collector field. Int. J. Control 83(5), 970–982 (2010)

    Article  MATH  Google Scholar 

  4. Arahal, M.R.: Identification and control using neural networks. PhD Thesis, University of Seville, Seville, Spain (1996) (in Spanish)

    Google Scholar 

  5. Arahal, M.R., Berenguel, M., Camacho, E.F.: Nonlinear neural model-based predictive control of a solar plant. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, vol. TH-E I2, 1997

    Google Scholar 

  6. Arahal, M.R., Berenguel, M., Camacho, E.F.: Comparison of RBF algorithms for output temperature prediction of a solar plant. In: Proc. of CONTROLO’98, Coimbra, Portugal, 1998

    Google Scholar 

  7. Arahal, M.R., Berenguel, M., Camacho, E.F.: Neural identification applied to predictive control of a solar plant. Control Eng. Pract., 333–344 (1998)

    Google Scholar 

  8. Åström, K.J., Wittenmark, B.: Computer Controlled Systems. Theory and Design. Prentice Hall, New York (1984)

    Google Scholar 

  9. Barão, M.: Dynamics and nonlinear control of a solar collector field. PhD Thesis, Universidade Tecnica de Lisboa, Instituto Superior Tecnico, Lisbon, Portugal (2000)

    Google Scholar 

  10. Barão, M., Lemos, J.M., Silva, R.N.: Reduced complexity adaptive nonlinear control of a distributed collector solar field. J. Process Control 12(1), 131–141 (2002)

    Article  Google Scholar 

  11. Berenguel, M.: Contributions to the control of distributed solar collectors. PhD Thesis, Universidad de Sevilla, Spain (1996) (in Spanish)

    Google Scholar 

  12. Berenguel, M.: Some control applications to solar plants. In: Proc. of the Int. Workshop on Constrained Control Systems, DAS-CTC-UFSC-NECCOSYDE, Florianópolis, SC, Brazil, 1998

    Google Scholar 

  13. Berenguel, M., Camacho, E.F., Rubio, F.R.: Simulation software package for the Acurex field. Internal Report, Dpto. de Ingeniería de Sistemas y Automática, ESI Sevilla, Spain. www.esi2.us.es/~rubio/libro2.html (1994)

  14. Berenguel, M., Arahal, M.R., Camacho, E.F.: Modeling free response of a solar plant for predictive control. In: Proc. of the 11th IFAC Symp. on Systems Identification, SYSID’97, Fukuoka, Japan, pp. 1291–1296 (1997)

    Google Scholar 

  15. Berenguel, M., Camacho, E.F., Rubio, F.R., Luk, P.C.K.: Incremental fuzzy PI control of a solar power plant. IEE Proc. Part D 144(6), 596–604 (1997)

    MATH  Google Scholar 

  16. Berenguel, M., Arahal, M.R., Camacho, E.F.: Modeling free response of a solar plant for predictive control. Control Eng. Pract. 6, 1257–1266 (1998)

    Article  Google Scholar 

  17. Berenguel, M., Rubio, F.R., Camacho, E.F., Gordillo, F.: Techniques and applications of fuzzy logic control of solar power plants. In: Leondes, C.T. (ed.) Fuzzy Theory Systems Techniques and Applications, vol. 2. Academic Press, San Diego (1999) (Chap. 25)

    Google Scholar 

  18. Bonilla, J., Yebra, L.J., Dormido, S.: A heuristic method to minimise the chattering problem in dynamic mathematical two-phase flow models. Math. Comput. Model. 54(5–6), 1549–1560 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Brosilow, C., Joseph, B.: Techniques of Model-Based Control. Prentice Hall, New York (2002)

    Google Scholar 

  20. Brus, L., Zambrano, D.: Black-box identification of solar collector dynamics with variant time delay. Control Eng. Pract. 18, 1133–1146 (2010)

    Article  Google Scholar 

  21. Camacho, E.F.: Constrained generalized predictive control. IEEE Trans. Autom. Control 38(2), 327–332 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Camacho, E.F., Berenguel, M.: Application of generalized predictive control to a solar power plant. In: Clarke, D.W. (ed.) Advances in Model-Based Predictive Control. Oxford University Press, London (1994)

    Google Scholar 

  23. Camacho, E.F., Berenguel, M.: Application of generalized predictive control to a solar power plant. In: Proc. of the Third IEEE Conf. on Control Applications, Glasgow, UK, pp. 1657–1662 (1994)

    Chapter  Google Scholar 

  24. Camacho, E.F., Berenguel, M.: Robust adaptive model predictive control of a solar plant with bounded uncertainties. Int. J. Adapt. Control Signal Process. 11(4), 311–325 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Camacho, E.F., Rubio, F.R., Gutiérrez, J.A.: Modelling and simulation of a solar power plant with a distributed collector system. In: Proc. of the Int. IFAC Symp. on Power Systems Modelling and Control Applications, Brussels, Belgium, 1988

    Google Scholar 

  26. Camacho, E.F., Rubio, F.R., Hughes, F.M.: Self-tuning control of a solar power plant with a distributed collector field. IEEE Control Syst. Mag., 72–78 (1992)

    Google Scholar 

  27. Camacho, E.F., Berenguel, M., Bordóns, C.: Adaptive generalized predictive control of a distributed collector field. IEEE Trans. Control Syst. Technol. 2(4), 462–467 (1994)

    Article  Google Scholar 

  28. Camacho, E.F., Berenguel, M., Rubio, F.R.: Application of a gain scheduling generalized predictive controller to a solar power plant. Control Eng. Pract. 2(2), 227–238 (1994)

    Article  Google Scholar 

  29. Camacho, E.F., Berenguel, M., Rubio, F.R.: Advanced Control of Solar Plants. Springer, Berlin (1997)

    Book  Google Scholar 

  30. Camacho, E.F., Rubio, F.R., Berenguel, M., Valenzuela, L.: A survey on control schemes for distributed solar collector fields. Part I: Modeling and basic control approaches. Sol. Energy 81, 1240–1251 (2007)

    Article  Google Scholar 

  31. Camacho, E.F., Rubio, F.R., Berenguel, M., Valenzuela, L.: A survey on control schemes for distributed solar collector fields. Part II: Advanced control approaches. Sol. Energy 81, 1252–1272 (2007)

    Article  Google Scholar 

  32. Cardoso, A.L., Henriques, J., Dourado, A.: Fuzzy supervisor and feedforward control of a solar power plant using accessible disturbances. In: Proc. of the European Control Conf., ECC’99, Karlsruhe, Germany, 1999

    Google Scholar 

  33. Carmona, R.: Modeling and control of a distributed solar collector field with a one-axis tracking system. PhD Thesis, University of Seville, Spain (1985) (in Spanish)

    Google Scholar 

  34. Carmona, R., Aranda, J.M., Silva, M., Andújar, J.M.: Regulation and automation of the SSPS-DCS ACUREX field of the PSA. Report No. R-15/87, PSA (1987)

    Google Scholar 

  35. Carotenuto, L., Cava, M.L., Raiconi, G.: Regular design for the bilinear distributed parameter of a solar power plant. Int. J. Syst. Sci. 16, 885–900 (1985)

    Article  MATH  Google Scholar 

  36. Carotenuto, L., Cava, M.L., Muraca, P., Raiconi, G.: Feedforward control for the distributed parameter model of a solar power plant. Large Scale Syst. 11, 233–241 (1986)

    MATH  Google Scholar 

  37. Cirre, C.M., Moreno, J.C., Berenguel, M.: Robust QFT control of a solar collectors field. In: Martínez, D. (ed.) IHP Programme. Research Results at PSA Within the Year 2002 Access Campaign. CIEMAT, Madrid (2003)

    Google Scholar 

  38. Cirre, C.M., Valenzuela, L., Berenguel, M., Camacho, E.F.: A control strategy integrating automatic setpoint generation and feedforward control for a distributed solar collector field. In: Proc. XIV Jornadas de Automática, León, Spain, 2004 (in Spanish)

    Google Scholar 

  39. Cirre, C.M., Valenzuela, L., Berenguel, M., Camacho, E.F.: Control de plantas solares con generación automática de consignas. Rev. Iberoam. Autom. Inform. Ind. 1, 56–66 (2004)

    Google Scholar 

  40. Cirre, C.M., Valenzuela, L., Berenguel, M., Camacho, E.F.: Feedback linearization control for a distributed solar collector field. In: Proc. of the 16th IFAC World Congress, Prague, Czech Republic, 2005

    Google Scholar 

  41. Cirre, C.M., Berenguel, M., Valenzuela, L., Camacho, E.F.: Feedback linearization control for a distributed solar collector field. Control Eng. Pract. 15, 1533–1544 (2007)

    Article  Google Scholar 

  42. Cirre, C.M., Moreno, J.C., Berenguel, M., Guzmán, J.L.: Robust control of solar plants with distributed collectors. In: Proc. of the 2010 IFAC Int. Symp. on Dynamics and Control of Process Systems, DYCOPS 2010, Leuven, Belgium, 2010, Paper ID: 103

    Google Scholar 

  43. Clarke, D.W., Mohtadi, C., Tuffs, P.S.: Generalized predictive control—Part I. The basic algorithm. Automatica 23(2), 137–148 (1987)

    Article  MATH  Google Scholar 

  44. Cohen, W.C., Johnston, E.F.: Dynamic characteristics of double-pipe heat exchangers. Ind. Eng. Chem. 48, 1031–1034 (1956)

    Article  Google Scholar 

  45. Dynasim, A.B.: Dymola 5.3 User Manual. http://www.dynasim.se (2004)

  46. Eborn, J.: On model libraries for thermo-hydraulic applications. PhD Thesis, Department of Automatic Control, Lund Institute of Technology, Sweden (2001)

    Google Scholar 

  47. Eck, M., Eberl, M.: Controller design for injection mode driven direct solar steam generating parabolic trough collectors. In: Proc. of the ISES Solar World Congress 1999, Jerusalem, Israel, vol. I, pp. 247–257 (1999)

    Chapter  Google Scholar 

  48. España, M.D., Rodríguez, V.L.: Approximate steady-state modeling of a solar trough collector. Sol. Energy 37(6), 447–545 (1987)

    Article  Google Scholar 

  49. Farkas, I., Vajk, I.: Experiments with internal model-based controller for Acurex field. In: Martínez, D. (ed.) Proc. of the 2nd Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (2002)

    Google Scholar 

  50. Farkas, I., Vajk, I.: Internal model-based controller for a solar plant. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, 2002

    Google Scholar 

  51. Farkas, I., Vajk, I.: Modeling and control of a distributed solar collector field. In: Proc. of the Energy and Environment Congress, Opatija, Croatia, 2002

    Google Scholar 

  52. Farkas, I., Vajk, I.: Experiments with robust internal model-based controller for Acurex field. In: Martínez, D. (ed.) IHP Programme. Research Results at PSA Within the Year 2002 Access Campaign. CIEMAT, Madrid (2003)

    Google Scholar 

  53. Henriques, J., Cardoso, A., Dourado, A.: Supervision and c-Means clustering of PID controllers for a solar power plant. Int. J. Approx. Reason. 22(1–2), 73–91 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  54. Henriques, J., Gil, P., Dourado, A.: Neural output regulation for a solar power plant. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, 2002

    Google Scholar 

  55. Igreja, J.M., Lemos, J.M., Barão, M., Silva, R.N.: Adaptive nonlinear control of a distributed collector solar field. In: Proc. of the European Control Conf., ECC’03, Cambridge, UK, 2003

    Google Scholar 

  56. Ionescu, C., Wyns, B., Sbarciog, M., Boullart, L., De Keyser, R.: Comparison between physical modeling and neural network modeling of a solar power plant. In: Proc. of the IASTED Int. Conf. on Applied Simulation and Modeling, ASM’04, Rhodes, Greece, 2004

    Google Scholar 

  57. Johansen, T.A., Storaa, C.: An internal energy controller for distributed solar collector fields. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop IHP Programme, CIEMAT. CIEMAT, Madrid (2002)

    Google Scholar 

  58. Johansen, T.A., Storaa, C.: Energy-based control of a distributed solar collector field. Automatica 38(7), 1191–1199 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  59. Johansen, T.A., Hunt, K.J., Petersen, I.: Gain-scheduled control of a solar power plant. Control Eng. Pract. 8(9), 1011–1022 (2000)

    Article  Google Scholar 

  60. Kalogirou, S.A.: Applications of artificial neural-networks for energy systems. Appl. Energy 67, 17–35 (2000)

    Article  Google Scholar 

  61. Kalogirou, S.A.: Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev. 5, 373–401 (2001)

    Article  Google Scholar 

  62. Kalt, A.: Distributed Collector System Plant Construction Report. IEA/SSPS Operating Agent DFVLR, Cologne (1982)

    Google Scholar 

  63. Ke, J.Y., Tang, K.S., Man, K.F., Luk, P.C.K.: Hierarchical genetic fuzzy controller for a solar power plant. In: Proc. of the IEEE Int. Symp. on Industrial Electronics, ISIE’98, South Africa, pp. 584–588 (1998)

    Google Scholar 

  64. Klein, A.A., Duffie, J.A., Beckman, W.A.: Transient considerations of flat-plate solar collectors. Trans. ASME J. Eng. Power 96A, 109–110 (1974)

    Article  Google Scholar 

  65. Ljung, L.: System Identification, Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  66. Luk, P.C.K., Low, K.C., Sayiah, A.: GA-based fuzzy logic control of a solar power plant using distributed collector fields. Renew. Energy 16(1–4), 765–768 (1999)

    Article  Google Scholar 

  67. Markou, H., Petropoulakis, L.: PID-type fuzzy control of the Acurex solar collector field. In: Martínez, D. (ed.) Proc. of the 2nd Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (2002)

    Google Scholar 

  68. Meaburn, A.: Modeling and control of a distributed solar collector field. PhD Thesis, Department of Electrical Engineering and Electronics, UMIST, UK (1995)

    Google Scholar 

  69. Meaburn, A., Hughes, F.M.: Resonance characteristics of distributed solar collector fields. Sol. Energy 51(3), 215–221 (1993)

    Article  Google Scholar 

  70. Meaburn, A., Hughes, F.M.: A control technique for resonance cancellation. In: Proc. of the IEE Colloquium on Nonlinear Control Using Structural Knowledge of System Models, London, UK, 1993

    Google Scholar 

  71. Meaburn, A., Hughes, F.M.: A pre-scheduled adaptive control scheme based upon system knowledge. In: Proc. of the IEE Colloquium on Adaptive Controllers in Practice—Part One, London, UK, 1995

    Google Scholar 

  72. Meaburn, A., Hughes, F.M.: Feedforward control of solar thermal power plants. Trans. ASME J. Sol. Energy Eng. 119(1), 52–61 (1997)

    Article  Google Scholar 

  73. Modelica Association: Modelica, a unified object oriented language for physical systems modeling. Language specification 2.2. Technical Report. http://www.modelica.org (2005)

  74. Nenciari, G., Mosca, E.: Supervised multicontrollers for temperature regulation of a distributed collector field. In: Martínez, D. (ed.) Proc. of the 1st Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (1998)

    Google Scholar 

  75. Normey-Rico, J.E., Bordóns, C., Berenguel, M., Camacho, E.F.: A robust adaptive dead-time compensator with application to a solar collector field. In: Proc. of the IFAC Linear Time Delay Systems Workshop, Grenoble, France, 1998

    Google Scholar 

  76. Orbach, A., Rorres, C., Fischl, R.: Optimal control of a solar collector loop using a distributed-lumped model. Automatica 27(3), 535–539 (1981)

    Article  Google Scholar 

  77. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Series in Computational and Physical Processes in Mechanics and Thermal Sciences. Taylor & Francis, London (1980)

    MATH  Google Scholar 

  78. Pereira, C., Dourado, A.: Application of a neuro-fuzzy network with support vector learning to a solar power plant. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop IHP Programme, CIEMAT. CIEMAT, Madrid (2002)

    Google Scholar 

  79. Pereira, C., Dourado, A.: Application of a neuro-fuzzy network with support vector learning to a solar power plant. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, 2002

    Google Scholar 

  80. Pérez de la Parte, M., Cirre, C.M., Camacho, E.F., Berenguel, M.: Application of predictive sliding mode controllers to a solar plant. IEEE Trans. Control Syst. Technol. 16(4), 819–825 (2008)

    Article  Google Scholar 

  81. Pickhardt, R.: Application of adaptive controllers to a solar power plant using a multi-model description. In: Proc. of the American Control Conf., Albuquerque, NM, USA, 1998

    Google Scholar 

  82. Pickhardt, R.: Adaptive control of a solar power plant using a multi-model control. IEE Proc. Part D 147(5), 493–500 (2000)

    Google Scholar 

  83. Pickhardt, R.: Nonlinear modeling and adaptive predictive control of a solar power plant. Control Eng. Pract. 8(8), 937–947 (2000)

    Article  Google Scholar 

  84. Pickhardt, R.: Results of the application of adaptive controllers to the Acurex field. In: Martínez, D. (ed.) Proc. of the 2nd Users Group TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (2003)

    Google Scholar 

  85. Rato, L., Borelli, D., Mosca, E., Lemos, J.M., Balsa, P.: MUSMAR based switching control of a solar collector field. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, 1997

    Google Scholar 

  86. Rato, L., Silva, R.N., Lemos, J.M., Coito, F.: Multirate MUSMAR cascade control of a distributed solar field. In: Proc. of the European Control Conf., ECC’97, Brussels, Belgium, 1997

    Google Scholar 

  87. Rhodes, C., Morari, M.: Determining the model order of nonlinear input/output systems directly from data. In: Proc. of the American Control Conf., Seattle, WA, pp. 1290–1295 (1995)

    Google Scholar 

  88. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proc. of the European Symp. on Artificial Neural Networks, ESANN’93, Brussels, Belgium, pp. 917–922 (1993)

    Google Scholar 

  89. Roca, L., Berenguel, M., Yebra, L., Alarcón-Padilla, D.: Solar field control for desalination plants. Sol. Energy 82, 772–786 (2008)

    Article  Google Scholar 

  90. Roca, L., Guzmán, J.L., Normey-Rico, J.E., Berenguel, M., Yebra, L.: Robust constrained predictive feedback linearization controller in a solar desalination plant collector field. Control Eng. Pract. 17, 1076–1088 (2009)

    Article  Google Scholar 

  91. Rorres, C., Orbach, A., Fischl, R.: Optimal and suboptimal control policies for a solar collector system. IEEE Trans. Autom. Control AC-25, 1085–1091 (1980)

    Article  Google Scholar 

  92. Rubio, F.R.: Adaptive control of industrial processes. Application to a solar plant. PhD Thesis, Universidad de Sevilla (1985) (in Spanish)

    Google Scholar 

  93. Rubio, F.R., Carmona, R., Camacho, E.F.: Adaptive control of the Acurex field. In: Kesserlring, P., Selvage, C.S. (eds.) The IEA/SSPS Solar Thermal Power Plants, vol. 2. Springer, Berlin (1986)

    Google Scholar 

  94. Rubio, F.R., Hughes, F.M., Camacho, E.F.: Self-tuning PI control of a solar power plant. In: Prep. IFAC Symp. in Adaptive Systems in Control and Signal Processing, Glasgow, UK, pp. 335–340 (1989)

    Google Scholar 

  95. Rubio, F.R., Berenguel, M., Camacho, E.F.: Fuzzy logic control of a solar power plant. IEEE Trans. Fuzzy Syst. 3(4), 459–468 (1995)

    Article  Google Scholar 

  96. Rubio, F.R., Camacho, E.F., Berenguel, M.: Control de campos de colectores solares. Rev. Iberoam. Autom. Inform. Ind. 3(4), 26–45 (2006)

    Google Scholar 

  97. Sbarciog, M., Wyns, B., Ionescu, C., Keyser, R.D., Boullart, L.: Neural networks models for a solar plant. In: Proc. of the 2nd IASTED Conf. on Neural Networks and Computational Intelligence, NCI2004, Grindelwald, Switzerland, 2004

    Google Scholar 

  98. Seborg, D.E.: A perspective on advanced strategies for process control (revisited). In: Frank, P.M. (ed.) Advances in Control—Highlights of ECC’99. Springer, Berlin (1999)

    Google Scholar 

  99. Silva, R.N., Rato, L.M., Lemos, J.M., Coito, F.: Cascade control of a distributed collector solar field. J. Process Control 4(2), 111–117 (1997)

    Article  Google Scholar 

  100. Silva, R.N., Filatov, N., Lemos, J.M., Unbehauen, H.: Feedback/feedforward dual adaptive control of a solar collector field. In: Proc. of the IEEE Int. Conf. on Control Applications, Glasgow, UK, pp. 309–313 (1998)

    Google Scholar 

  101. Silva, R.N., Rato, L.M., Barão, L.M., Lemos, J.M.: A physical model based approach to distributed collector solar field control. In: Proc. of the American Control Conf., Anchorage, AK, USA, pp. 1822–3817 (2002)

    Google Scholar 

  102. Silva, R.N., Rato, L.M., Lemos, J.M.: Observer based time warped control of distributed collector solar fields. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop IHP Programme, CIEMAT. CIEMAT, Madrid (2002)

    Google Scholar 

  103. Silva, R.N., Lemos, J.M., Rato, L.M.: Variable sampling adaptive control of a distributed collector solar field. IEEE Trans. Control Syst. Technol. 11(5), 765–772 (2003)

    Article  Google Scholar 

  104. Silva, R.N., Rato, L.M., Lemos, J.M.: Time scaling internal state predictive control of a solar plant. Control Eng. Pract. 11(12), 1459–1467 (2003)

    Article  Google Scholar 

  105. Slotine, J., Li, W.: Applied Nonlinear Control. Prentice Hall, New York (1991)

    MATH  Google Scholar 

  106. Stirrup, R., Loebis, D., Chipperfield, A.J., Tang, K.S., Kwong, S., Man, K.F.: Gain-scheduled control of a solar power plant using a hierarchical MOGA-tuned fuzzy PI-controller. In: Proc. of ISIE 2001, the IEEE Int. Symp. on Industrial Electronics, Pusan, Korea, pp. 25–29 (2001)

    Google Scholar 

  107. Tummescheit, H.: Design and implementation of object-oriented model libraries using modelica. PhD Thesis, Department of Automatic Control, Lund Institute of Technology, Sweden (2002)

    Google Scholar 

  108. Valenzuela, L., Balsa, P.: Series and parallel feedforward control schemes to regulate the operation of a solar collector field. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (1998)

    Google Scholar 

  109. Valenzuela, L., Zarza, E., Berenguel, M., Camacho, E.F.: Direct steam generation in solar boilers. IEEE Control Syst. Mag. 24(2), 15–29 (2004)

    Article  Google Scholar 

  110. Valenzuela, L., Zarza, E., Berenguel, M., Camacho, E.F.: Control concepts for direct steam generation in parabolic troughs. Sol. Energy 78, 301–311 (2005)

    Article  Google Scholar 

  111. Valenzuela, L., Zarza, E., Berenguel, M., Camacho, E.F.: Control schemes for direct steam generation in parabolic solar collectors under recirculation operation mode. Sol. Energy 80, 1–17 (2005)

    Article  Google Scholar 

  112. van Willigenburg, L.G., Bontsema, J., Koning, W.L.D., Valenzuela, L., Cirre, C.M.: Direct reduced-order digital control of a solar collector field. In: Martínez, D. (ed.) Proc. of the IHP Programme. Research Results at PSA Within the Year 2003 Access Campaign. CIEMAT. CIEMAT, Madrid (2004)

    Google Scholar 

  113. van Willigenburg, L.G., Bontsema, J., Koning, W.L.D., Valenzuela, L., Cirre, C.M.: Digital optimal reduced-order control of a solar power plant. In: Proc. of UKACC-IEE CONTROL 2004, University of Bath, UK, 2004

    Google Scholar 

  114. Vaz, F., Oliveira, R., Silva, R.N.: PID control of a solar plant with gain interpolation. In: Martínez, D. (ed.) Proc. of the 2nd Users Workshop TMR Programme at PSA, CIEMAT. CIEMAT, Madrid (1998)

    Google Scholar 

  115. Wagner, W., Kruse, A.: Properties of Water and Steam. Springer, Berlin (1998)

    Google Scholar 

  116. Wyns, B., Sbarciog, M., Ionescu, C., Boullart, L., De Keyser, R.: Neural network modeling versus physical modeling application to a solar power plant. In: Martínez, D. (ed.) Proc. of the IHP Programme. Research Results at PSA Within the Year 2003 Access Campaign, CIEMAT. CIEMAT, Madrid (2004)

    Google Scholar 

  117. Yebra, L.J., Berenguel, M., Dormido, S.: Extended moving boundary models for two-phase flows. In: Proc. of the 16th IFAC World Congress, Prague, Czech Republic, 2005

    Google Scholar 

  118. Yebra, L.J., Berenguel, M., Dormido, S., Zarza, E.: Object oriented modelling and simulation of parabolic trough collectors with Modelica. Math. Comput. Model. Dyn. Syst. 14(4), 361–375 (2008)

    Article  MATH  Google Scholar 

  119. Yebra, L.J., Berenguel, M., Bonilla, J., Roca, L., Dormido, S., Zarza, E.: Object oriented modelling and simulation of Acurex solar thermal power plant. In: Proc. of MathMod09, Vienna, Austria, 2009

    Google Scholar 

  120. Yebra, L.J., Berenguel, M., Bonilla, J., Roca, L., Dormido, S., Zarza, E.: Object-oriented modelling and simulation of ACUREX solar thermal power plant. Math. Comput. Model. Dyn. Syst. 16(3), 211–224 (2010)

    Article  MATH  Google Scholar 

  121. Zarza, E., Valenzuela, L., León, J., Hennecke, K., Eck, M., Weyers, H.D., Eickhoff, M.: The DISS project: direct steam generation in parabolic troughs. Operation and maintenance experience & update on project status. In: Proc. of ASME Int. Solar Energy Conf.: Forum 2001, Washington, DC, USA, 2001

    Google Scholar 

  122. Zarza, E., Valenzuela, L., León, J., Hennecke, K., Weyers, H.D., Eickhoff, M.: Direct steam generation in parabolic troughs. Final results and conclusions of the DISS project. In: Proc. of the 11th SolarPaces Int. Symp. on Concentrated Solar Power and Chemical Energy Technologies, Zurich, Switzerland, 2002

    Google Scholar 

  123. Zarza, E., Valenzuela, L., León, J., Hennecke, K., Eck, M., Weyers, H.D., Eickhoff, M.: The DISS project: direct steam generation in parabolic trough systems. Operation & maintenance experience and update on project status. J. Sol. Energy Eng. Trans. ASME 124, 126–133 (2004)

    Article  Google Scholar 

  124. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64, 759–768 (1942)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo F. Camacho .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Camacho, E.F., Berenguel, M., Rubio, F.R., Martínez, D. (2012). Basic Control of Parabolic Troughs. In: Control of Solar Energy Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-916-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-916-1_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-915-4

  • Online ISBN: 978-0-85729-916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics